Comparative Analysis of Deep Learning Models for Real-World ISP Network Traffic Forecasting
These configs were used in the paper "Koumar, J., Smoleň, T., Jeřábek, K. and Čejka, T., 2025. Comparative Analysis of Deep Learning Models for Real-World ISP Network Traffic Forecasting. arXiv preprint arXiv:2503.17410.".
Benchmark hash | Dataset | Aggregation | Source |
---|---|---|---|
2439d12c2292 | CESNET-TimeSeries24 | 1 HOUR | INSTITUTIONS |
63882fe052f8 | CESNET-TimeSeries24 | 1 HOUR | INSTITUTIONS |
5a79f6cd3506 | CESNET-TimeSeries24 | 1 HOUR | INSTITUTIONS |
5a7471b2c70b | CESNET-TimeSeries24 | 1 HOUR | INSTITUTIONS |
0f4fbc0419ce | CESNET-TimeSeries24 | 1 HOUR | INSTITUTIONS |
d166d3b19a87 | CESNET-TimeSeries24 | 1 HOUR | INSTITUTION_SUBNETS |
2112383abab7 | CESNET-TimeSeries24 | 1 HOUR | INSTITUTION_SUBNETS |
5d9e6e63cbf0 | CESNET-TimeSeries24 | 1 HOUR | INSTITUTION_SUBNETS |
d82139cd671f | CESNET-TimeSeries24 | 1 HOUR | INSTITUTION_SUBNETS |
d03ba8db5892 | CESNET-TimeSeries24 | 1 HOUR | INSTITUTION_SUBNETS |
2e92831cb502 | CESNET-TimeSeries24 | 1 HOUR | IP_ADDRESSES_SAMPLE |
702e58166879 | CESNET-TimeSeries24 | 1 HOUR | IP_ADDRESSES_SAMPLE |
394603854070 | CESNET-TimeSeries24 | 1 HOUR | IP_ADDRESSES_SAMPLE |
420d4303f949 | CESNET-TimeSeries24 | 1 HOUR | IP_ADDRESSES_SAMPLE |
e2c2148a178c | CESNET-TimeSeries24 | 1 HOUR | IP_ADDRESSES_SAMPLE |
Example of usage of this related works configs:
from cesnet_tszoo.benchmarks import load_benchmark
from cesnet_tszoo.utils.enums import FillerType, ScalerType
benchmark = load_benchmark("2439d12c2292", "../")
dataset = benchmark.get_initialized_dataset()
# Get related results
related_results = benchmark.get_related_results()
print(related_results)
# Process with your own defined model
results = []
for ts_id in tqdm.tqdm(dataset.get_data_about_set(about='train')['ts_ids']):
model = SimpleLSTM().to(device)
model.fit(
dataset.get_train_dataloader(ts_id),
dataset.get_val_dataloader(ts_id),
n_epochs=5,
device=device,
)
y_pred, y_true = model.predict(
dataset.get_test_dataloader(ts_id),
device=device,
)
rmse = mean_squared_error(y_true, y_pred)
results.append(rmse)
_mean = round(np.mean(results), 3)
_std = round(np.std(results), 3)
print(f"Mean RMSE: {_mean}")
print(f"Std RMSE: {_std}")
# Compare with related works results
better_works = related_results[related_results['Avg. RMSE'] < _mean]
worse_works = related_results[related_results['Avg. RMSE'] <= _mean]
print(better_works)
print(worse_works)