Skip to content

Time-based config class

cesnet_tszoo.configs.time_based_config.TimeBasedConfig

Bases: TimeBasedHandler, DatasetConfig

This class is used for configuring the TimeBasedCesnetDataset.

Used to configure the following:

  • Train, validation, test, all sets (time period, sizes, features, window size)
  • Handling missing values (default values, fillers)
  • Handling anomalies (anomaly handlers)
  • Data transformation using transformers
  • Dataloader options (train/val/test/all/init workers, batch sizes)
  • Plotting

Important Notes:

  • Custom fillers must inherit from the fillers base class.
  • Fillers can carry over values from the train set to the validation and test sets. For example, ForwardFiller can carry over values from previous sets.
  • Custom anomaly handlers must inherit from the anomaly handlers base class.
  • It is recommended to use the transformers base class, though this is not mandatory as long as it meets the required methods.
    • If transformers are already initialized and create_transformer_per_time_series is True and partial_fit_initialized_transformers is True then transformers must support partial_fit.
    • If create_transformer_per_time_series is True, transformers must have a fit method and transform_with should be a list of transformers.
    • If create_transformer_per_time_series is False, transformers must support partial_fit.
    • Transformers must implement the transform method.
    • The fit/partial_fit and transform methods must accept an input of type np.ndarray with shape (times, features).
  • train_time_period, val_time_period, test_time_period can overlap, but they should keep order of train_time_period < val_time_period < test_time_period

For available configuration options, refer to here.

Attributes:

Name Type Description
used_train_workers

Tracks the number of train workers in use. Helps determine if the train dataloader should be recreated based on worker changes.

used_val_workers

Tracks the number of validation workers in use. Helps determine if the validation dataloader should be recreated based on worker changes.

used_test_workers

Tracks the number of test workers in use. Helps determine if the test dataloader should be recreated based on worker changes.

used_all_workers

Tracks the total number of all workers in use. Helps determine if the all dataloader should be recreated based on worker changes.

uses_all_time_period

Whether all time period set should be used.

import_identifier

Tracks the name of the config upon import. None if not imported.

logger

Logger for displaying information.

The following attributes are initialized when set_dataset_config_and_initialize is called:

Attributes:

Name Type Description
display_train_time_period

Used to display the configured value of train_time_period.

display_val_time_period

Used to display the configured value of val_time_period.

display_test_time_period

Used to display the configured value of test_time_period.

display_all_time_period

Used to display the configured value of all_time_period.

all_time_period

If no specific sets (train/val/test) are provided, all time IDs are used. When any set is defined, only the time IDs in defined sets are used.

ts_row_ranges

Initialized when ts_ids is set. Contains time series IDs in ts_ids with their respective time ID ranges (same as all_time_period).

aggregation

The aggregation period used for the data.

source_type

The source type of the data.

database_name

Specifies which database this config applies to.

transform_with_display

Used to display the configured type of transform_with.

fill_missing_with_display

Used to display the configured type of fill_missing_with.

handle_anomalies_with_display

Used to display the configured type of handle_anomalies_with.

features_to_take_without_ids

Features to be returned, excluding time or time series IDs.

indices_of_features_to_take_no_ids

Indices of non-ID features in features_to_take.

is_transformer_custom

Flag indicating whether the transformer is custom.

is_filler_custom

Flag indicating whether the filler is custom.

is_anomaly_handler_custom

Flag indicating whether the anomaly handler is custom.

ts_id_name

Name of the time series ID, dependent on source_type.

used_times

List of all times used in the configuration.

used_ts_ids

List of all time series IDs used in the configuration.

used_ts_row_ranges

List of time series IDs with their respective time ID ranges.

used_fillers

List of all fillers used in the configuration.

used_anomaly_handlers

List of all anomaly handlers used in the configuration.

used_singular_train_time_series

Currently used singular train set time series for dataloader.

used_singular_val_time_series

Currently used singular validation set time series for dataloader.

used_singular_test_time_series

Currently used singular test set time series for dataloader.

used_singular_all_time_series

Currently used singular all set time series for dataloader.

transformers

Prepared transformers for fitting/transforming. Can be one transformer, array of transformers or None.

are_transformers_premade

Indicates whether the transformers are premade.

train_fillers

Fillers used in the train set. None if no filler is used or train set is not used.

val_fillers

Fillers used in the validation set. None if no filler is used or validation set is not used.

test_fillers

Fillers used in the test set. None if no filler is used or test set is not used.

all_fillers

Fillers used for the all set. None if no filler is used or all set is not used.

anomaly_handlers

Prepared anomaly handlers for fitting/handling anomalies. Can be array of anomaly handlers or None.

is_initialized

Flag indicating if the configuration has already been initialized. If true, config initialization will be skipped.

version

Version of cesnet-tszoo this config was made in.

export_update_needed

Whether config was updated to newer version and should be exported.

Configuration options

Attributes:

Name Type Description
ts_ids

Defines which time series IDs are used for train/val/test/all. Can be a list of IDs, or an integer/float to specify a random selection. An int specifies the number of random time series, and a float specifies the proportion of available time series. int and float must be greater than 0, and a float should be smaller or equal to 1.0.

train_time_period

Defines the time period for training set. Can be a range of time IDs or a tuple of datetime objects. Float value is equivalent to percentage of available times with offseted position from previous used set. Default: None

val_time_period

Defines the time period for validation set. Can be a range of time IDs or a tuple of datetime objects. Float value is equivalent to percentage of available times with offseted position from previous used set. Default: None

test_time_period

Defines the time period for test set. Can be a range of time IDs or a tuple of datetime objects. Default: None

features_to_take

Defines which features are used. Default: "all"

default_values

Default values for missing data, applied before fillers. Can set one value for all features or specify for each feature. Default: "default"

sliding_window_size

Number of times in one window. Impacts dataloader behavior. Batch sizes affects how much data will be cached for creating windows. Default: None

sliding_window_prediction_size

Number of times to predict from sliding_window_size. Impacts dataloader behavior. Batch sizes affects how much data will be cached for creating windows. Default: None

sliding_window_step

Number of times to move by after each window. Default: 1

set_shared_size

How much times should time periods share. Order of sharing is training set < validation set < test set. Only in effect if sets share less values than set_shared_size. Use float value for percentage of total times or int for count. Default: 0

train_batch_size

Batch size for the train dataloader. Affects number of returned times in one batch. Default: 32

val_batch_size

Batch size for the validation dataloader. Affects number of returned times in one batch. Default: 64

test_batch_size

Batch size for the test dataloader. Affects number of returned times in one batch. Default: 128

all_batch_size

Batch size for the all dataloader. Affects number of returned times in one batch. Default: 128

fill_missing_with

Defines how to fill missing values in the dataset. Can pass enum FillerType for built-in filler or pass a type of custom filler that must derive from Filler base class. Default: None

transform_with

Defines the transformer used to transform the dataset. Can pass enum TransformerType for built-in transformer, pass a type of custom transformer or instance of already fitted transformer(s). Default: None

handle_anomalies_with

Defines the anomaly handler for handling anomalies in the train set. Can pass enum AnomalyHandlerType for built-in anomaly handler or a type of custom anomaly handler. Default: None

create_transformer_per_time_series

If True, a separate transformer is created for each time series. Not used when using already initialized transformers. Default: True

partial_fit_initialized_transformers

If True, partial fitting on train set is performed when using initiliazed transformers. Default: False

include_time

If True, time data is included in the returned values. Default: True

include_ts_id

If True, time series IDs are included in the returned values. Default: True

time_format

Format for the returned time data. When using TimeFormat.DATETIME, time will be returned as separate list along rest of the values. Default: TimeFormat.ID_TIME

train_workers

Number of workers for loading training data. 0 means that the data will be loaded in the main process. Default: 4

val_workers

Number of workers for loading validation data. 0 means that the data will be loaded in the main process. Default: 3

test_workers

Number of workers for loading test data. 0 means that the data will be loaded in the main process. Default: 2

all_workers

Number of workers for loading all data. 0 means that the data will be loaded in the main process. Default: 4

init_workers

Number of workers for initial dataset processing during configuration. 0 means that the data will be loaded in the main process. Default: 4

nan_threshold

Maximum allowable percentage of missing data. Time series exceeding this threshold are excluded. Time series over the threshold will not be used. Used for train/val/test/all separately. Default: 1.0

random_state

Fixes randomness for reproducibility during configuration and dataset initialization. Default: None

Source code in cesnet_tszoo\configs\time_based_config.py
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
class TimeBasedConfig(TimeBasedHandler, DatasetConfig):
    """
    This class is used for configuring the [`TimeBasedCesnetDataset`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset].

    Used to configure the following:

    - Train, validation, test, all sets (time period, sizes, features, window size)
    - Handling missing values (default values, [`fillers`][cesnet_tszoo.utils.filler])
    - Handling anomalies ([`anomaly handlers`][cesnet_tszoo.utils.anomaly_handler])
    - Data transformation using [`transformers`][cesnet_tszoo.utils.transformer]
    - Dataloader options (train/val/test/all/init workers, batch sizes)
    - Plotting

    **Important Notes:**

    - Custom fillers must inherit from the [`fillers`][cesnet_tszoo.utils.filler.Filler] base class.
    - Fillers can carry over values from the train set to the validation and test sets. For example, [`ForwardFiller`][cesnet_tszoo.utils.filler.ForwardFiller] can carry over values from previous sets.   
    - Custom anomaly handlers must inherit from the [`anomaly handlers`][cesnet_tszoo.utils.anomaly_handler.AnomalyHandler] base class.
    - It is recommended to use the [`transformers`][cesnet_tszoo.utils.transformer.Transformer] base class, though this is not mandatory as long as it meets the required methods.
        - If transformers are already initialized and `create_transformer_per_time_series` is `True` and `partial_fit_initialized_transformers` is `True` then transformers must support `partial_fit`.
        - If `create_transformer_per_time_series` is `True`, transformers must have a `fit` method and `transform_with` should be a list of transformers.
        - If `create_transformer_per_time_series` is `False`, transformers must support `partial_fit`.
        - Transformers must implement the `transform` method.
        - The `fit/partial_fit` and `transform` methods must accept an input of type `np.ndarray` with shape `(times, features)`.
    - `train_time_period`, `val_time_period`, `test_time_period` can overlap, but they should keep order of `train_time_period` < `val_time_period` < `test_time_period`

    For available configuration options, refer to [here][cesnet_tszoo.configs.time_based_config.TimeBasedConfig--configuration-options].

    Attributes:
        used_train_workers: Tracks the number of train workers in use. Helps determine if the train dataloader should be recreated based on worker changes.
        used_val_workers: Tracks the number of validation workers in use. Helps determine if the validation dataloader should be recreated based on worker changes.
        used_test_workers: Tracks the number of test workers in use. Helps determine if the test dataloader should be recreated based on worker changes.
        used_all_workers: Tracks the total number of all workers in use. Helps determine if the all dataloader should be recreated based on worker changes.
        uses_all_time_period: Whether all time period set should be used.
        import_identifier: Tracks the name of the config upon import. None if not imported.
        logger: Logger for displaying information.     

    The following attributes are initialized when [`set_dataset_config_and_initialize`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.set_dataset_config_and_initialize] is called:

    Attributes:
        display_train_time_period: Used to display the configured value of `train_time_period`.
        display_val_time_period: Used to display the configured value of `val_time_period`.
        display_test_time_period: Used to display the configured value of `test_time_period`.
        display_all_time_period: Used to display the configured value of `all_time_period`.
        all_time_period: If no specific sets (train/val/test) are provided, all time IDs are used. When any set is defined, only the time IDs in defined sets are used.
        ts_row_ranges: Initialized when `ts_ids` is set. Contains time series IDs in `ts_ids` with their respective time ID ranges (same as `all_time_period`).

        aggregation: The aggregation period used for the data.
        source_type: The source type of the data.
        database_name: Specifies which database this config applies to.
        transform_with_display: Used to display the configured type of `transform_with`.
        fill_missing_with_display: Used to display the configured type of `fill_missing_with`.
        handle_anomalies_with_display: Used to display the configured type of `handle_anomalies_with`.
        features_to_take_without_ids: Features to be returned, excluding time or time series IDs.
        indices_of_features_to_take_no_ids: Indices of non-ID features in `features_to_take`.
        is_transformer_custom: Flag indicating whether the transformer is custom.
        is_filler_custom: Flag indicating whether the filler is custom.
        is_anomaly_handler_custom: Flag indicating whether the anomaly handler is custom.
        ts_id_name: Name of the time series ID, dependent on `source_type`.
        used_times: List of all times used in the configuration.
        used_ts_ids: List of all time series IDs used in the configuration.
        used_ts_row_ranges: List of time series IDs with their respective time ID ranges.
        used_fillers: List of all fillers used in the configuration.
        used_anomaly_handlers: List of all anomaly handlers used in the configuration.
        used_singular_train_time_series: Currently used singular train set time series for dataloader.
        used_singular_val_time_series: Currently used singular validation set time series for dataloader.
        used_singular_test_time_series: Currently used singular test set time series for dataloader.
        used_singular_all_time_series: Currently used singular all set time series for dataloader.        
        transformers: Prepared transformers for fitting/transforming. Can be one transformer, array of transformers or `None`.
        are_transformers_premade: Indicates whether the transformers are premade.
        train_fillers: Fillers used in the train set. `None` if no filler is used or train set is not used.
        val_fillers: Fillers used in the validation set. `None` if no filler is used or validation set is not used.
        test_fillers: Fillers used in the test set. `None` if no filler is used or test set is not used.
        all_fillers: Fillers used for the all set. `None` if no filler is used or all set is not used.
        anomaly_handlers: Prepared anomaly handlers for fitting/handling anomalies. Can be array of anomaly handlers or `None`.
        is_initialized: Flag indicating if the configuration has already been initialized. If true, config initialization will be skipped.  
        version: Version of cesnet-tszoo this config was made in.
        export_update_needed: Whether config was updated to newer version and should be exported.     

    # Configuration options

    Attributes:
        ts_ids: Defines which time series IDs are used for train/val/test/all. Can be a list of IDs, or an integer/float to specify a random selection. An `int` specifies the number of random time series, and a `float` specifies the proportion of available time series. 
                `int` and `float` must be greater than 0, and a float should be smaller or equal to 1.0.  
        train_time_period: Defines the time period for training set. Can be a range of time IDs or a tuple of datetime objects. Float value is equivalent to percentage of available times with offseted position from previous used set. `Default: None`
        val_time_period: Defines the time period for validation set. Can be a range of time IDs or a tuple of datetime objects. Float value is equivalent to percentage of available times with offseted position from previous used set. `Default: None`
        test_time_period: Defines the time period for test set. Can be a range of time IDs or a tuple of datetime objects. `Default: None`
        features_to_take: Defines which features are used. `Default: "all"`                  
        default_values: Default values for missing data, applied before fillers. Can set one value for all features or specify for each feature. `Default: "default"`
        sliding_window_size: Number of times in one window. Impacts dataloader behavior. Batch sizes affects how much data will be cached for creating windows. `Default: None`
        sliding_window_prediction_size: Number of times to predict from sliding_window_size. Impacts dataloader behavior. Batch sizes affects how much data will be cached for creating windows. `Default: None`
        sliding_window_step: Number of times to move by after each window. `Default: 1`
        set_shared_size: How much times should time periods share. Order of sharing is training set < validation set < test set. Only in effect if sets share less values than set_shared_size. Use float value for percentage of total times or int for count. `Default: 0`
        train_batch_size: Batch size for the train dataloader. Affects number of returned times in one batch. `Default: 32`
        val_batch_size: Batch size for the validation dataloader. Affects number of returned times in one batch. `Default: 64`
        test_batch_size: Batch size for the test dataloader. Affects number of returned times in one batch. `Default: 128`
        all_batch_size: Batch size for the all dataloader. Affects number of returned times in one batch. `Default: 128`   
        fill_missing_with: Defines how to fill missing values in the dataset. Can pass enum [`FillerType`][cesnet_tszoo.utils.enums.FillerType] for built-in filler or pass a type of custom filler that must derive from [`Filler`][cesnet_tszoo.utils.filler.Filler] base class. `Default: None`
        transform_with: Defines the transformer used to transform the dataset. Can pass enum [`TransformerType`][cesnet_tszoo.utils.enums.TransformerType] for built-in transformer, pass a type of custom transformer or instance of already fitted transformer(s). `Default: None`
        handle_anomalies_with: Defines the anomaly handler for handling anomalies in the train set. Can pass enum [`AnomalyHandlerType`][cesnet_tszoo.utils.enums.AnomalyHandlerType] for built-in anomaly handler or a type of custom anomaly handler. `Default: None`
        create_transformer_per_time_series: If `True`, a separate transformer is created for each time series. Not used when using already initialized transformers. `Default: True`
        partial_fit_initialized_transformers: If `True`, partial fitting on train set is performed when using initiliazed transformers. `Default: False`
        include_time: If `True`, time data is included in the returned values. `Default: True`
        include_ts_id: If `True`, time series IDs are included in the returned values. `Default: True`
        time_format: Format for the returned time data. When using TimeFormat.DATETIME, time will be returned as separate list along rest of the values. `Default: TimeFormat.ID_TIME`
        train_workers: Number of workers for loading training data. `0` means that the data will be loaded in the main process. `Default: 4`
        val_workers: Number of workers for loading validation data. `0` means that the data will be loaded in the main process. `Default: 3`
        test_workers: Number of workers for loading test data. `0` means that the data will be loaded in the main process. `Default: 2`
        all_workers: Number of workers for loading all data. `0` means that the data will be loaded in the main process. `Default: 4`
        init_workers: Number of workers for initial dataset processing during configuration. `0` means that the data will be loaded in the main process. `Default: 4`
        nan_threshold: Maximum allowable percentage of missing data. Time series exceeding this threshold are excluded. Time series over the threshold will not be used. Used for `train/val/test/all` separately. `Default: 1.0`
        random_state: Fixes randomness for reproducibility during configuration and dataset initialization. `Default: None`                   
    """

    def __init__(self,
                 ts_ids: list[int] | npt.NDArray[np.int_] | float | int,
                 train_time_period: tuple[datetime, datetime] | range | float | None = None,
                 val_time_period: tuple[datetime, datetime] | range | float | None = None,
                 test_time_period: tuple[datetime, datetime] | range | float | None = None,
                 features_to_take: list[str] | Literal["all"] = "all",
                 default_values: list[Number] | npt.NDArray[np.number] | dict[str, Number] | Number | Literal["default"] | None = "default",
                 sliding_window_size: int | None = None,
                 sliding_window_prediction_size: int | None = None,
                 sliding_window_step: int = 1,
                 set_shared_size: float | int = 0,
                 train_batch_size: int = 32,
                 val_batch_size: int = 64,
                 test_batch_size: int = 128,
                 all_batch_size: int = 128,
                 fill_missing_with: type | FillerType | Literal["mean_filler", "forward_filler", "linear_interpolation_filler"] | None = None,
                 transform_with: type | list[Transformer] | np.ndarray[Transformer] | TransformerType | Transformer | Literal["min_max_scaler", "standard_scaler", "max_abs_scaler", "log_transformer", "robust_scaler", "power_transformer", "quantile_transformer", "l2_normalizer"] | None = None,
                 handle_anomalies_with: type | AnomalyHandlerType | Literal["z-score", "interquartile_range"] | None = None,
                 create_transformer_per_time_series: bool = True,
                 partial_fit_initialized_transformers: bool = False,
                 include_time: bool = True,
                 include_ts_id: bool = True,
                 time_format: TimeFormat | Literal["id_time", "datetime", "unix_time", "shifted_unix_time"] = TimeFormat.ID_TIME,
                 train_workers: int = 4,
                 val_workers: int = 3,
                 test_workers: int = 2,
                 all_workers: int = 4,
                 init_workers: int = 4,
                 nan_threshold: float = 1.0,
                 random_state: int | None = None):

        self.ts_ids = ts_ids

        self.ts_row_ranges = None

        self.logger = logging.getLogger("time_config")

        TimeBasedHandler.__init__(self, self.logger, train_batch_size, val_batch_size, test_batch_size, all_batch_size, True, sliding_window_size, sliding_window_prediction_size, sliding_window_step, set_shared_size, train_time_period, val_time_period, test_time_period)
        DatasetConfig.__init__(self, features_to_take, default_values, train_batch_size, val_batch_size, test_batch_size, all_batch_size, fill_missing_with, transform_with, handle_anomalies_with, partial_fit_initialized_transformers, include_time, include_ts_id, time_format,
                               train_workers, val_workers, test_workers, all_workers, init_workers, nan_threshold, create_transformer_per_time_series, DatasetType.TIME_BASED, DataloaderOrder.SEQUENTIAL, random_state, self.logger)

    def _validate_construction(self) -> None:
        """Performs basic parameter validation to ensure correct configuration. More comprehensive validation, which requires dataset-specific data, is handled in [`_dataset_init`][cesnet_tszoo.configs.time_based_config.TimeBasedConfig._dataset_init]. """

        DatasetConfig._validate_construction(self)

        self._validate_set_shared_size_init()
        self._validate_sliding_window_init()
        self._update_batch_sizes(self.train_batch_size, self.val_batch_size, self.test_batch_size, self.all_batch_size)

        assert self.ts_ids is not None, "ts_ids must not be None"

        split_float_total = 0

        if isinstance(self.ts_ids, (float, int)):
            assert self.ts_ids > 0, "ts_ids must be greater than 0"
            if isinstance(self.ts_ids, float):
                split_float_total += self.ts_ids

        # Check if the total of float splits exceeds 1.0
        if split_float_total > 1.0:
            self.logger.error("The total of the float split sizes is greater than 1.0. Current total: %s", split_float_total)
            raise ValueError("Total value of used float split sizes can't be greater than 1.0.")

        self._validate_time_periods_init()

        self.logger.debug("Time-based configuration validated successfully.")

    def _update_batch_sizes(self, train_batch_size: int, val_batch_size: int, test_batch_size: int, all_batch_size: int) -> None:

        # Adjust batch sizes based on sliding_window_size
        if self.sliding_window_size is not None:

            if self.sliding_window_step <= 0:
                raise ValueError("sliding_window_step must be greater or equal to 1.")

            total_window_size = self.sliding_window_size + self.sliding_window_prediction_size

            if isinstance(self.train_batch_size, int) and total_window_size > self.train_batch_size:
                self.train_batch_size = self.sliding_window_size + self.sliding_window_prediction_size
                self.logger.info("train_batch_size adjusted to %s as it should be greater than or equal to sliding_window_size + sliding_window_prediction_size.", total_window_size)
            if isinstance(self.val_batch_size, int) and total_window_size > self.val_batch_size:
                self.val_batch_size = self.sliding_window_size + self.sliding_window_prediction_size
                self.logger.info("val_batch_size adjusted to %s as it should be greater than or equal to sliding_window_size + sliding_window_prediction_size.", total_window_size)
            if isinstance(self.test_batch_size, int) and total_window_size > self.test_batch_size:
                self.test_batch_size = self.sliding_window_size + self.sliding_window_prediction_size
                self.logger.info("test_batch_size adjusted to %s as it should be greater than or equal to sliding_window_size + sliding_window_prediction_size.", total_window_size)
            if isinstance(self.all_batch_size, int) and total_window_size > self.all_batch_size:
                self.all_batch_size = self.sliding_window_size + self.sliding_window_prediction_size
                self.logger.info("all_batch_size adjusted to %s as it should be greater than or equal to sliding_window_size + sliding_window_prediction_size.", total_window_size)

        DatasetConfig._update_batch_sizes(self, train_batch_size, val_batch_size, test_batch_size, all_batch_size)

    def _update_sliding_window(self, sliding_window_size: int | None, sliding_window_prediction_size: int | None, sliding_window_step: int | None, set_shared_size: float | int, all_time_ids: np.ndarray):
        """Updates values related to sliding window. """
        TimeBasedHandler._update_sliding_window(self, sliding_window_size, sliding_window_prediction_size, sliding_window_step, set_shared_size, all_time_ids, self.has_train(), self.has_val(), self.has_test(), self.has_all())

    def _get_train(self) -> tuple[np.ndarray, np.ndarray] | tuple[None, None]:
        """Returns the indices corresponding to the training set. """
        return self.ts_ids, self.train_time_period

    def _get_val(self) -> tuple[np.ndarray, np.ndarray] | tuple[None, None]:
        """Returns the indices corresponding to the validation set. """
        return self.ts_ids, self.val_time_period

    def _get_test(self) -> tuple[np.ndarray, np.ndarray] | tuple[None, None]:
        """Returns the indices corresponding to the test set. """
        return self.ts_ids, self.test_time_period

    def _get_all(self) -> tuple[np.ndarray, np.ndarray] | tuple[None, None]:
        """Returns the indices corresponding to the all set. """
        return self.ts_ids, self.all_time_period

    def has_train(self) -> bool:
        """Returns whether training set is used. """
        return self.train_time_period is not None

    def has_val(self) -> bool:
        """Returns whether validation set is used. """
        return self.val_time_period is not None

    def has_test(self) -> bool:
        """Returns whether test set is used. """
        return self.test_time_period is not None

    def has_all(self) -> bool:
        """Returns whether all set is used. """
        return self.all_time_period is not None

    def _set_time_period(self, all_time_ids: np.ndarray) -> None:
        """Validates and filters `train_time_period`, `val_time_period`, `test_time_period` and `all_time_period` based on `dataset` and `aggregation`. """

        self._prepare_and_set_time_period_sets(all_time_ids, self.time_format)

    def _set_ts(self, all_ts_ids: np.ndarray, all_ts_row_ranges: np.ndarray) -> None:
        """ Validates and filters inputted time series id from `ts_ids` based on `dataset` and `source_type`. Handles random set."""

        random_ts_ids = all_ts_ids[self.ts_id_name]
        random_indices = np.arange(len(all_ts_ids))

        # Process ts_ids if it was specified with times series ids
        if not isinstance(self.ts_ids, (float, int)):
            self.ts_ids, self.ts_row_ranges, _ = SeriesBasedHandler._process_ts_ids(self.ts_ids, all_ts_ids, all_ts_row_ranges, None, None, self.logger, self.ts_id_name, self.random_state)

            mask = np.isin(random_ts_ids, self.ts_ids, invert=True)
            random_ts_ids = random_ts_ids[mask]
            random_indices = random_indices[mask]

            self.logger.debug("ts_ids set: %s", self.ts_ids)

        # Convert proportions to total values
        if isinstance(self.ts_ids, float):
            self.ts_ids = int(self.ts_ids * len(random_ts_ids))
            self.logger.debug("ts_ids converted to total values: %s", self.ts_ids)

        # Process random ts_ids if it is to be randomly made
        if isinstance(self.ts_ids, int):
            self.ts_ids, self.ts_row_ranges, random_indices = SeriesBasedHandler._process_ts_ids(None, all_ts_ids, all_ts_row_ranges, self.ts_ids, random_indices, self.logger, self.ts_id_name, self.random_state)
            self.logger.debug("Random ts_ids set with %s time series.", self.ts_ids)

    def _set_feature_transformers(self) -> None:
        """Creates and/or validates transformers based on the `transform_with` parameter. """

        if self.transform_with is None:
            self.transform_with_display = None
            self.are_transformers_premade = False
            self.transformers = None
            self.is_transformer_custom = None

            self.logger.debug("No transformer will be used because transform_with is not set.")
            return

        if not self.has_train():
            if self.partial_fit_initialized_transformers:
                self.logger.warning("partial_fit_initialized_transformers will be ignored because train set is not used.")
            self.partial_fit_initialized_transformers = False

        # Treat transform_with as a list of initialized transformers
        if isinstance(self.transform_with, (list, np.ndarray)):
            self.create_transformer_per_time_series = True

            self.transformers = np.array(self.transform_with)
            self.transform_with = None

            assert len(self.transformers) == len(self.ts_ids), "Number of time series in ts_ids does not match with number of provided transformers."

            # Ensure that all transformers in the list are of the same type
            for transformer in self.transformers:
                if isinstance(transformer, (type, TransformerType)):
                    raise ValueError("transformer_with as a list of transformers must contain only initialized transformers.")

                new_transform_with, self.transform_with_display = transformer_from_input_to_transformer_type(type(transformer), check_for_fit=False, check_for_partial_fit=self.partial_fit_initialized_transformers)

                if self.transform_with is None:
                    self.transform_with = new_transform_with
                elif self.transform_with != new_transform_with:
                    raise ValueError("Transformers in transform_with must all be of the same type.")

            self.are_transformers_premade = True

            self.is_transformer_custom = "Custom" in self.transform_with_display
            self.logger.debug("Using list of initialized transformers of type: %s", self.transform_with_display)

        # Treat transform_with as already initialized transformer
        elif not isinstance(self.transform_with, (type, TransformerType)):
            self.create_transformer_per_time_series = False

            self.transformers = self.transform_with

            self.transform_with, self.transform_with_display = transformer_from_input_to_transformer_type(type(self.transform_with), check_for_fit=False, check_for_partial_fit=self.partial_fit_initialized_transformers)

            self.are_transformers_premade = True

            self.is_transformer_custom = "Custom" in self.transform_with_display
            self.logger.debug("Using initialized transformer of type: %s", self.transform_with_display)

        # Treat transform_with as uninitialized transformer
        else:
            if not self.has_train():
                self.transform_with = None
                self.transform_with_display = None
                self.are_transformers_premade = False
                self.transformers = None
                self.is_transformer_custom = None

                self.logger.warning("No transformer will be used because train set is not used.")
                return

            self.transform_with, self.transform_with_display = transformer_from_input_to_transformer_type(self.transform_with, check_for_fit=self.create_transformer_per_time_series, check_for_partial_fit=not self.create_transformer_per_time_series)

            self.are_transformers_premade = False

            self.is_transformer_custom = "Custom" in self.transform_with_display
            if self.create_transformer_per_time_series:
                self.transformers = np.array([self.transform_with() for _ in self.ts_ids])
                self.logger.debug("Using list of uninitialized transformers of type: %s", self.transform_with_display)
            else:
                self.transformers = self.transform_with()
                self.logger.debug("Using uninitialized transformer of type: %s", self.transform_with_display)

    def _set_fillers(self) -> None:
        """Creates and/or validates fillers based on the `fill_missing_with` parameter. """

        self.fill_missing_with, self.fill_missing_with_display = filler_from_input_to_type(self.fill_missing_with)
        self.is_filler_custom = "Custom" in self.fill_missing_with_display if self.fill_missing_with is not None else None

        if self.fill_missing_with is None:
            self.logger.debug("No filler is used because fill_missing_with is set to None.")
            return

        # Set the fillers for the training set
        if self.has_train():
            self.train_fillers = np.array([self.fill_missing_with(self.features_to_take_without_ids) for _ in self.ts_ids])
            self.logger.debug("Fillers for training set are set.")

        # Set the fillers for the validation set
        if self.has_val():
            self.val_fillers = np.array([self.fill_missing_with(self.features_to_take_without_ids) for _ in self.ts_ids])
            self.logger.debug("Fillers for validation set are set.")

        # Set the fillers for the test set
        if self.has_test():
            self.test_fillers = np.array([self.fill_missing_with(self.features_to_take_without_ids) for _ in self.ts_ids])
            self.logger.debug("Fillers for test set are set.")

        # Set the fillers for the all set
        if self.has_all():
            self.all_fillers = np.array([self.fill_missing_with(self.features_to_take_without_ids) for _ in self.ts_ids])
            self.logger.debug("Fillers for all set are set.")

    def _set_anomaly_handlers(self):
        """Creates and/or validates anomaly handlers based on the `handle_anomalies_with` parameter. """

        if self.handle_anomalies_with is None:
            self.logger.debug("No anomaly handler is used because handle_anomalies_with is set to None.")
            return

        if not self.has_train():
            self.logger.error("Anomaly handler cannot be used without train set. Either set train set or set handle_anomalies_with to None")
            raise ValueError("Anomaly handler cannot be used without train set. Either set train set or set handle_anomalies_with to None")

        self.logger.info("Anomaly handler will only be used for train set.")

        self.handle_anomalies_with, self.handle_anomalies_with_display = anomaly_handler_from_input_to_anomaly_handler_type(self.handle_anomalies_with)
        self.is_anomaly_handler_custom = "Custom" in self.handle_anomalies_with_display

        self.anomaly_handlers = np.array([self.handle_anomalies_with() for _ in self.ts_ids])

    def _validate_finalization(self) -> None:
        """ Performs final validation of the configuration. Validates whether `train/val/test` are continuos. """

        self._validate_time_periods_overlap()

    def __str__(self) -> str:

        if self.transform_with is None:
            transformer_part = f"Transformer type: {str(self.transform_with_display)}"
        else:
            transformer_part = f'''Transformer type: {str(self.transform_with_display)}
        Is transformer per Time series: {self.create_transformer_per_time_series}
        Are transformers premade: {self.are_transformers_premade}
        Are premade transformers partial_fitted: {self.partial_fit_initialized_transformers}'''

        if self.include_time:
            time_part = f'''Time included: {str(self.include_time)}    
        Time format: {str(self.time_format)}'''
        else:
            time_part = f"Time included: {str(self.include_time)}"

        return f'''
Config Details
    Used for database: {self.database_name}
    Aggregation: {str(self.aggregation)}
    Source: {str(self.source_type)}

    Time series
        Time series IDS: {get_abbreviated_list_string(self.ts_ids)}
    Time periods
        Train time periods: {str(self.display_train_time_period)}
        Val time periods: {str(self.display_val_time_period)}
        Test time periods: {str(self.display_test_time_period)}
        All time periods: {str(self.display_all_time_period)}
    Features
        Taken features: {str(self.features_to_take_without_ids)}
        Default values: {self.default_values}
        Time series ID included: {str(self.include_ts_id)}
        {time_part}
    Sliding window
        Sliding window size: {self.sliding_window_size}
        Sliding window prediction size: {self.sliding_window_prediction_size}
        Sliding window step size: {self.sliding_window_step}
        Set shared size: {self.set_shared_size}
    Fillers
        Filler type: {str(self.fill_missing_with_display)}
    Transformers
        {transformer_part}
    Anomaly handler
        Anomaly handler type: {str(self.handle_anomalies_with_display)}        
    Batch sizes
        Train batch size: {self.train_batch_size}
        Val batch size: {self.val_batch_size}
        Test batch size: {self.test_batch_size}
        All batch size: {self.all_batch_size}
    Default workers
        Init worker count: {str(self.init_workers)}
        Train worker count: {str(self.train_workers)}
        Val worker count: {str(self.val_workers)}
        Test worker count: {str(self.test_workers)}
        All worker count: {str(self.all_workers)}
    Other
        Nan threshold: {str(self.nan_threshold)}
        Random state: {self.random_state}
        Version: {self.version}
                '''

has_all

has_all() -> bool

Returns whether all set is used.

Source code in cesnet_tszoo\configs\time_based_config.py
258
259
260
def has_all(self) -> bool:
    """Returns whether all set is used. """
    return self.all_time_period is not None

has_test

has_test() -> bool

Returns whether test set is used.

Source code in cesnet_tszoo\configs\time_based_config.py
254
255
256
def has_test(self) -> bool:
    """Returns whether test set is used. """
    return self.test_time_period is not None

has_train

has_train() -> bool

Returns whether training set is used.

Source code in cesnet_tszoo\configs\time_based_config.py
246
247
248
def has_train(self) -> bool:
    """Returns whether training set is used. """
    return self.train_time_period is not None

has_val

has_val() -> bool

Returns whether validation set is used.

Source code in cesnet_tszoo\configs\time_based_config.py
250
251
252
def has_val(self) -> bool:
    """Returns whether validation set is used. """
    return self.val_time_period is not None