Skip to content

Time-based config class

cesnet_tszoo.configs.time_based_config.TimeBasedConfig

Bases: DatasetConfig

This class is used for configuring the TimeBasedCesnetDataset.

Used to configure the following:

  • Train, validation, test, test_other, all sets (time period, sizes, features, window size)
  • Handling missing values (default values, fillers)
  • Data transformation using scalers
  • Dataloader options (train/val/test/all/init workers, batch sizes)
  • Plotting

Important Notes:

  • Custom fillers must inherit from the fillers base class.
  • Fillers can carry over values from the train set to the validation and test sets. For example, ForwardFiller can carry over values from previous sets.
  • It is recommended to use the scalers base class, though this is not mandatory as long as it meets the required methods.
    • If scalers are already initialized and create_scaler_per_time_series is True and partial_fit_initialized_scalers is True then scalers must support partial_fit.
    • If create_scaler_per_time_series is True, scalers must have a fit method and scale_with should be a list of scalers.
    • If create_scaler_per_time_series is False, scalers must support partial_fit.
    • Scalers must implement the transform method.
    • The fit/partial_fit and transform methods must accept an input of type np.ndarray with shape (times, features).
    • Scalers are applied to test_other only when create_scaler_per_time_series is False.
  • ts_ids and test_ts_ids must not contain any overlapping time series IDs.
  • train_time_period, val_time_period, test_time_period can overlap, but they should keep order of train_time_period < val_time_period < test_time_period

For available configuration options, refer to here.

Attributes:

Name Type Description
used_train_workers

Tracks the number of train workers in use. Helps determine if the train dataloader should be recreated based on worker changes.

used_val_workers

Tracks the number of validation workers in use. Helps determine if the validation dataloader should be recreated based on worker changes.

used_test_workers

Tracks the number of test workers in use. Helps determine if the test dataloader should be recreated based on worker changes.

used_test_other_workers

Tracks the number of test_other workers in use. Helps determine if the test_other dataloader should be recreated based on worker changes.

used_all_workers

Tracks the total number of all workers in use. Helps determine if the all dataloader should be recreated based on worker changes.

import_identifier

Tracks the name of the config upon import. None if not imported.

logger

Logger for displaying information.

The following attributes are initialized when set_dataset_config_and_initialize is called:

Attributes:

Name Type Description
display_train_time_period

Used to display the configured value of train_time_period.

display_val_time_period

Used to display the configured value of val_time_period.

display_test_time_period

Used to display the configured value of test_time_period.

display_all_time_period

Used to display the configured value of all_time_period.

all_time_period

If no specific sets (train/val/test) are provided, all time IDs are used. When any set is defined, only the time IDs in defined sets are used.

ts_row_ranges

Initialized when ts_ids is set. Contains time series IDs in ts_ids with their respective time ID ranges (same as all_time_period).

test_ts_row_ranges

Initialized when test_ts_ids is set. Contains time series IDs in test_ts_ids with their respective time ID ranges (same as test_time_period).

other_test_fillers

Fillers used in the test_other set. None if no filler is used or test_other set is not used.

has_ts_ids

Flag indicating whether the ts_ids is in use.

has_test_ts_ids

Flag indicating whether the test_ts_ids is in use.

aggregation

The aggregation period used for the data.

source_type

The source type of the data.

database_name

Specifies which database this config applies to.

scale_with_display

Used to display the configured type of scale_with.

fill_missing_with_display

Used to display the configured type of fill_missing_with.

features_to_take_without_ids

Features to be returned, excluding time or time series IDs.

indices_of_features_to_take_no_ids

Indices of non-ID features in features_to_take.

is_scaler_custom

Flag indicating whether the scaler is custom.

is_filler_custom

Flag indicating whether the filler is custom.

ts_id_name

Name of the time series ID, dependent on source_type.

used_times

List of all times used in the configuration.

used_ts_ids

List of all time series IDs used in the configuration.

used_ts_row_ranges

List of time series IDs with their respective time ID ranges.

used_fillers

List of all fillers used in the configuration.

used_singular_train_time_series

Currently used singular train set time series for dataloader.

used_singular_val_time_series

Currently used singular validation set time series for dataloader.

used_singular_test_time_series

Currently used singular test set time series for dataloader.

used_singular_test_other_time_series

Currently used singular test other set time series for dataloader.

used_singular_all_time_series

Currently used singular all set time series for dataloader.

scalers

Prepared scalers for fitting/transforming. Can be one scaler, array of scalers or None.

are_scalers_premade

Indicates whether the scalers are premade.

has_train

Flag indicating whether the training set is in use.

has_val

Flag indicating whether the validation set is in use.

has_test

Flag indicating whether the test set is in use.

has_all

Flag indicating whether the all set is in use.

train_fillers

Fillers used in the train set. None if no filler is used or train set is not used.

val_fillers

Fillers used in the validation set. None if no filler is used or validation set is not used.

test_fillers

Fillers used in the test set. None if no filler is used or test set is not used.

all_fillers

Fillers used for the all set. None if no filler is used or all set is not used.

is_initialized

Flag indicating if the configuration has already been initialized. If true, config initialization will be skipped.

Configuration options

Attributes:

Name Type Description
ts_ids

Defines which time series IDs are used for train/val/test/all. Can be a list of IDs, or an integer/float to specify a random selection. An int specifies the number of random time series, and a float specifies the proportion of available time series. int and float must be greater than 0, and a float should be smaller or equal to 1.0. Using int or float guarantees that no time series from test_ts_ids will be used. Default: None

train_time_period

Defines the time period for training set. Can be a range of time IDs or a tuple of datetime objects. Float value is equivalent to percentage of available times with offseted position from previous used set. Default: None

val_time_period

Defines the time period for validation set. Can be a range of time IDs or a tuple of datetime objects. Float value is equivalent to percentage of available times with offseted position from previous used set. Default: None

test_time_period

Defines the time period for test set. Can be a range of time IDs or a tuple of datetime objects. Default: None

features_to_take

Defines which features are used. Default: "all"

test_ts_ids

Defines which time series IDs are used in the test_other set. Same as ts_ids but for the test_other set. These time series only use times in test_time_period. Default: None

default_values

Default values for missing data, applied before fillers. Can set one value for all features or specify for each feature. Default: "default"

sliding_window_size

Number of times in one window. Impacts dataloader behavior. Batch sizes affects how much data will be cached for creating windows. Default: None

sliding_window_prediction_size

Number of times to predict from sliding_window_size. Impacts dataloader behavior. Batch sizes affects how much data will be cached for creating windows. Default: None

sliding_window_step

Number of times to move by after each window. Default: 1

set_shared_size

How much times should time periods share. Order of sharing is training set < validation set < test set. Only in effect if sets share less values than set_shared_size. Use float value for percentage of total times or int for count. Default: 0

train_batch_size

Batch size for the train dataloader. Affects number of returned times in one batch. Default: 32

val_batch_size

Batch size for the validation dataloader. Affects number of returned times in one batch. Default: 64

test_batch_size

Batch size for the test dataloader. Affects number of returned times in one batch. Default: 128

all_batch_size

Batch size for the all dataloader. Affects number of returned times in one batch. Default: 128

fill_missing_with

Defines how to fill missing values in the dataset. Can pass enum FillerType for built-in filler or pass a type of custom filler that must derive from Filler base class. Default: None

scale_with

Defines the scaler used to transform the dataset. Can pass enum ScalerType for built-in scaler, pass a type of custom scaler or instance of already fitted scaler(s). Default: None

create_scaler_per_time_series

If True, a separate scaler is created for each time series. Not used when using already initialized scalers. Default: True

partial_fit_initialized_scalers

If True, partial fitting on train set is performed when using initiliazed scalers. Default: False

include_time

If True, time data is included in the returned values. Default: True

include_ts_id

If True, time series IDs are included in the returned values. Default: True

time_format

Format for the returned time data. When using TimeFormat.DATETIME, time will be returned as separate list along rest of the values. Default: TimeFormat.ID_TIME

train_workers

Number of workers for loading training data. 0 means that the data will be loaded in the main process. Default: 4

val_workers

Number of workers for loading validation data. 0 means that the data will be loaded in the main process. Default: 3

test_workers

Number of workers for loading test and test_other data. 0 means that the data will be loaded in the main process. Default: 2

all_workers

Number of workers for loading all data. 0 means that the data will be loaded in the main process. Default: 4

init_workers

Number of workers for initial dataset processing during configuration. 0 means that the data will be loaded in the main process. Default: 4

nan_threshold

Maximum allowable percentage of missing data. Time series exceeding this threshold are excluded. Time series over the threshold will not be used. Used for train/val/test/all separately. Default: 1.0

random_state

Fixes randomness for reproducibility during configuration and dataset initialization. Default: None

Source code in cesnet_tszoo\configs\time_based_config.py
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
class TimeBasedConfig(DatasetConfig):
    """
    This class is used for configuring the [`TimeBasedCesnetDataset`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset].

    Used to configure the following:

    - Train, validation, test, test_other, all sets (time period, sizes, features, window size)
    - Handling missing values (default values, [`fillers`][cesnet_tszoo.utils.filler])
    - Data transformation using [`scalers`][cesnet_tszoo.utils.scaler]
    - Dataloader options (train/val/test/all/init workers, batch sizes)
    - Plotting

    **Important Notes:**

    - Custom fillers must inherit from the [`fillers`][cesnet_tszoo.utils.filler.Filler] base class.
    - Fillers can carry over values from the train set to the validation and test sets. For example, [`ForwardFiller`][cesnet_tszoo.utils.filler.ForwardFiller] can carry over values from previous sets.    
    - It is recommended to use the [`scalers`][cesnet_tszoo.utils.scaler.Scaler] base class, though this is not mandatory as long as it meets the required methods.
        - If scalers are already initialized and `create_scaler_per_time_series` is `True` and `partial_fit_initialized_scalers` is `True` then scalers must support `partial_fit`.
        - If `create_scaler_per_time_series` is `True`, scalers must have a `fit` method and `scale_with` should be a list of scalers.
        - If `create_scaler_per_time_series` is `False`, scalers must support `partial_fit`.
        - Scalers must implement the `transform` method.
        - The `fit/partial_fit` and `transform` methods must accept an input of type `np.ndarray` with shape `(times, features)`.
        - Scalers are applied to `test_other` only when `create_scaler_per_time_series` is `False`.    
    - `ts_ids` and `test_ts_ids` must not contain any overlapping time series IDs.
    - `train_time_period`, `val_time_period`, `test_time_period` can overlap, but they should keep order of `train_time_period` < `val_time_period` < `test_time_period`

    For available configuration options, refer to [here][cesnet_tszoo.configs.time_based_config.TimeBasedConfig--configuration-options].

    Attributes:
        used_train_workers: Tracks the number of train workers in use. Helps determine if the train dataloader should be recreated based on worker changes.
        used_val_workers: Tracks the number of validation workers in use. Helps determine if the validation dataloader should be recreated based on worker changes.
        used_test_workers: Tracks the number of test workers in use. Helps determine if the test dataloader should be recreated based on worker changes.
        used_test_other_workers: Tracks the number of test_other workers in use. Helps determine if the test_other dataloader should be recreated based on worker changes.
        used_all_workers: Tracks the total number of all workers in use. Helps determine if the all dataloader should be recreated based on worker changes.
        import_identifier: Tracks the name of the config upon import. None if not imported.
        logger: Logger for displaying information.     

    The following attributes are initialized when [`set_dataset_config_and_initialize`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.set_dataset_config_and_initialize] is called:

    Attributes:
        display_train_time_period: Used to display the configured value of `train_time_period`.
        display_val_time_period: Used to display the configured value of `val_time_period`.
        display_test_time_period: Used to display the configured value of `test_time_period`.
        display_all_time_period: Used to display the configured value of `all_time_period`.
        all_time_period: If no specific sets (train/val/test) are provided, all time IDs are used. When any set is defined, only the time IDs in defined sets are used.
        ts_row_ranges: Initialized when `ts_ids` is set. Contains time series IDs in `ts_ids` with their respective time ID ranges (same as `all_time_period`).
        test_ts_row_ranges: Initialized when `test_ts_ids` is set. Contains time series IDs in `test_ts_ids` with their respective time ID ranges (same as `test_time_period`).    
        other_test_fillers: Fillers used in the test_other set. `None` if no filler is used or test_other set is not used.
        has_ts_ids: Flag indicating whether the `ts_ids` is in use.       
        has_test_ts_ids: Flag indicating whether the `test_ts_ids` is in use.    

        aggregation: The aggregation period used for the data.
        source_type: The source type of the data.
        database_name: Specifies which database this config applies to.
        scale_with_display: Used to display the configured type of `scale_with`.
        fill_missing_with_display: Used to display the configured type of `fill_missing_with`.
        features_to_take_without_ids: Features to be returned, excluding time or time series IDs.
        indices_of_features_to_take_no_ids: Indices of non-ID features in `features_to_take`.
        is_scaler_custom: Flag indicating whether the scaler is custom.
        is_filler_custom: Flag indicating whether the filler is custom.
        ts_id_name: Name of the time series ID, dependent on `source_type`.
        used_times: List of all times used in the configuration.
        used_ts_ids: List of all time series IDs used in the configuration.
        used_ts_row_ranges: List of time series IDs with their respective time ID ranges.
        used_fillers: List of all fillers used in the configuration.
        used_singular_train_time_series: Currently used singular train set time series for dataloader.
        used_singular_val_time_series: Currently used singular validation set time series for dataloader.
        used_singular_test_time_series: Currently used singular test set time series for dataloader.
        used_singular_test_other_time_series: Currently used singular test other set time series for dataloader.
        used_singular_all_time_series: Currently used singular all set time series for dataloader.             
        scalers: Prepared scalers for fitting/transforming. Can be one scaler, array of scalers or `None`.
        are_scalers_premade: Indicates whether the scalers are premade.
        has_train: Flag indicating whether the training set is in use.
        has_val: Flag indicating whether the validation set is in use.
        has_test: Flag indicating whether the test set is in use.
        has_all: Flag indicating whether the all set is in use.
        train_fillers: Fillers used in the train set. `None` if no filler is used or train set is not used.
        val_fillers: Fillers used in the validation set. `None` if no filler is used or validation set is not used.
        test_fillers: Fillers used in the test set. `None` if no filler is used or test set is not used.
        all_fillers: Fillers used for the all set. `None` if no filler is used or all set is not used.
        is_initialized: Flag indicating if the configuration has already been initialized. If true, config initialization will be skipped.      

    # Configuration options

    Attributes:
        ts_ids: Defines which time series IDs are used for train/val/test/all. Can be a list of IDs, or an integer/float to specify a random selection. An `int` specifies the number of random time series, and a `float` specifies the proportion of available time series. 
                `int` and `float` must be greater than 0, and a float should be smaller or equal to 1.0. Using `int` or `float` guarantees that no time series from `test_ts_ids` will be used. `Default: None`    
        train_time_period: Defines the time period for training set. Can be a range of time IDs or a tuple of datetime objects. Float value is equivalent to percentage of available times with offseted position from previous used set. `Default: None`
        val_time_period: Defines the time period for validation set. Can be a range of time IDs or a tuple of datetime objects. Float value is equivalent to percentage of available times with offseted position from previous used set. `Default: None`
        test_time_period: Defines the time period for test set. Can be a range of time IDs or a tuple of datetime objects. `Default: None`
        features_to_take: Defines which features are used. `Default: "all"` 
        test_ts_ids: Defines which time series IDs are used in the test_other set. Same as `ts_ids` but for the test_other set. These time series only use times in `test_time_period`. `Default: None`                   
        default_values: Default values for missing data, applied before fillers. Can set one value for all features or specify for each feature. `Default: "default"`
        sliding_window_size: Number of times in one window. Impacts dataloader behavior. Batch sizes affects how much data will be cached for creating windows. `Default: None`
        sliding_window_prediction_size: Number of times to predict from sliding_window_size. Impacts dataloader behavior. Batch sizes affects how much data will be cached for creating windows. `Default: None`
        sliding_window_step: Number of times to move by after each window. `Default: 1`
        set_shared_size: How much times should time periods share. Order of sharing is training set < validation set < test set. Only in effect if sets share less values than set_shared_size. Use float value for percentage of total times or int for count. `Default: 0`
        train_batch_size: Batch size for the train dataloader. Affects number of returned times in one batch. `Default: 32`
        val_batch_size: Batch size for the validation dataloader. Affects number of returned times in one batch. `Default: 64`
        test_batch_size: Batch size for the test dataloader. Affects number of returned times in one batch. `Default: 128`
        all_batch_size: Batch size for the all dataloader. Affects number of returned times in one batch. `Default: 128`   
        fill_missing_with: Defines how to fill missing values in the dataset. Can pass enum [`FillerType`][cesnet_tszoo.utils.enums.FillerType] for built-in filler or pass a type of custom filler that must derive from [`Filler`][cesnet_tszoo.utils.filler.Filler] base class. `Default: None`
        scale_with: Defines the scaler used to transform the dataset. Can pass enum [`ScalerType`][cesnet_tszoo.utils.enums.ScalerType] for built-in scaler, pass a type of custom scaler or instance of already fitted scaler(s). `Default: None`
        create_scaler_per_time_series: If `True`, a separate scaler is created for each time series. Not used when using already initialized scalers. `Default: True`
        partial_fit_initialized_scalers: If `True`, partial fitting on train set is performed when using initiliazed scalers. `Default: False`
        include_time: If `True`, time data is included in the returned values. `Default: True`
        include_ts_id: If `True`, time series IDs are included in the returned values. `Default: True`
        time_format: Format for the returned time data. When using TimeFormat.DATETIME, time will be returned as separate list along rest of the values. `Default: TimeFormat.ID_TIME`
        train_workers: Number of workers for loading training data. `0` means that the data will be loaded in the main process. `Default: 4`
        val_workers: Number of workers for loading validation data. `0` means that the data will be loaded in the main process. `Default: 3`
        test_workers: Number of workers for loading test and test_other data. `0` means that the data will be loaded in the main process. `Default: 2`
        all_workers: Number of workers for loading all data. `0` means that the data will be loaded in the main process. `Default: 4`
        init_workers: Number of workers for initial dataset processing during configuration. `0` means that the data will be loaded in the main process. `Default: 4`
        nan_threshold: Maximum allowable percentage of missing data. Time series exceeding this threshold are excluded. Time series over the threshold will not be used. Used for `train/val/test/all` separately. `Default: 1.0`
        random_state: Fixes randomness for reproducibility during configuration and dataset initialization. `Default: None`                   
    """

    def __init__(self,
                 ts_ids: list[int] | npt.NDArray[np.int_] | float | int,
                 train_time_period: tuple[datetime, datetime] | range | float | None = None,
                 val_time_period: tuple[datetime, datetime] | range | float | None = None,
                 test_time_period: tuple[datetime, datetime] | range | float | None = None,
                 features_to_take: list[str] | Literal["all"] = "all",
                 test_ts_ids: list[int] | npt.NDArray[np.int_] | float | int | None = None,
                 default_values: list[Number] | npt.NDArray[np.number] | dict[str, Number] | Number | Literal["default"] | None = "default",
                 sliding_window_size: int | None = None,
                 sliding_window_prediction_size: int | None = None,
                 sliding_window_step: int = 1,
                 set_shared_size: float | int = 0,
                 train_batch_size: int = 32,
                 val_batch_size: int = 64,
                 test_batch_size: int = 128,
                 all_batch_size: int = 128,
                 fill_missing_with: type | FillerType | Literal["mean_filler", "forward_filler", "linear_interpolation_filler"] | None = None,
                 scale_with: type | list[Scaler] | np.ndarray[Scaler] | ScalerType | Scaler | Literal["min_max_scaler", "standard_scaler", "max_abs_scaler", "log_scaler", "robust_scaler", "power_transformer", "quantile_transformer", "l2_normalizer"] | None = None,
                 create_scaler_per_time_series: bool = True,
                 partial_fit_initialized_scalers: bool = False,
                 include_time: bool = True,
                 include_ts_id: bool = True,
                 time_format: TimeFormat | Literal["id_time", "datetime", "unix_time", "shifted_unix_time"] = TimeFormat.ID_TIME,
                 train_workers: int = 4,
                 val_workers: int = 3,
                 test_workers: int = 2,
                 all_workers: int = 4,
                 init_workers: int = 4,
                 nan_threshold: float = 1.0,
                 random_state: int | None = None):

        self.ts_ids = ts_ids
        self.train_time_period = train_time_period
        self.val_time_period = val_time_period
        self.test_time_period = test_time_period
        self.test_ts_ids = test_ts_ids

        self.display_train_time_period = None
        self.display_val_time_period = None
        self.display_test_time_period = None
        self.display_all_time_period = None
        self.all_time_period = None
        self.used_test_other_workers = None
        self.ts_row_ranges = None
        self.test_ts_row_ranges = None
        self.other_test_fillers = None
        self.has_ts_ids = False
        self.has_test_ts_ids = False
        self.used_singular_test_other_time_series = None

        super(TimeBasedConfig, self).__init__(features_to_take, default_values, sliding_window_size, sliding_window_prediction_size, sliding_window_step, set_shared_size, train_batch_size, val_batch_size, test_batch_size, all_batch_size, fill_missing_with, scale_with, partial_fit_initialized_scalers, include_time, include_ts_id, time_format,
                                              train_workers, val_workers, test_workers, all_workers, init_workers, nan_threshold, create_scaler_per_time_series, False, DataloaderOrder.SEQUENTIAL, random_state)

    def _validate_construction(self) -> None:
        """Performs basic parameter validation to ensure correct configuration. More comprehensive validation, which requires dataset-specific data, is handled in [`_dataset_init`][cesnet_tszoo.configs.time_based_config.TimeBasedConfig._dataset_init]. """

        super(TimeBasedConfig, self)._validate_construction()

        assert self.ts_ids is not None, "ts_ids must not be None"

        if self.test_time_period is None and self.test_ts_ids is not None:
            self.test_ts_ids = None
            self.logger.warning("test_ts_ids has been ignored because test_time_period is set to None.")

        split_float_total = 0

        if isinstance(self.ts_ids, (float, int)):
            assert self.ts_ids > 0, "ts_ids must be greater than 0"
            if isinstance(self.ts_ids, float):
                split_float_total += self.ts_ids

        if isinstance(self.test_ts_ids, (float, int)):
            assert self.test_ts_ids > 0, "test_ts_ids must be greater than 0"
            if isinstance(self.test_ts_ids, float):
                split_float_total += self.test_ts_ids

        # Check if the total of float splits exceeds 1.0
        if split_float_total > 1.0:
            self.logger.error("The total of the float split sizes is greater than 1.0. Current total: %s", split_float_total)
            raise ValueError("Total value of used float split sizes can't be greater than 1.0.")

        split_time_float_total = 0
        train_used_float = None if self.train_time_period is None else False
        val_used_float = None if self.val_time_period is None else False

        if isinstance(self.train_time_period, (float, int)):
            self.train_time_period = float(self.train_time_period)
            assert self.train_time_period > 0.0, "train_time_period must be greater than 0"
            split_time_float_total += self.train_time_period
            train_used_float = True

        if isinstance(self.val_time_period, (float, int)):
            if train_used_float is False:
                raise ValueError("val_time_period cant use float to be set, because train_time_period was set, but did not use float.")
            self.val_time_period = float(self.val_time_period)
            assert self.val_time_period > 0.0, "val_time_period must be greater than 0"
            split_time_float_total += self.val_time_period
            val_used_float = True

        if isinstance(self.test_time_period, (float, int)):
            if train_used_float is False or val_used_float is False:
                raise ValueError("test_time_period cant use float to be set, because previous periods were set, but did not use float.")
            self.test_time_period = float(self.test_time_period)
            assert self.test_time_period > 0.0, "test_time_period must be greater than 0"
            split_time_float_total += self.test_time_period

        # Check if the total of float splits exceeds 1.0
        if split_time_float_total > 1.0:
            self.logger.error("The total of the float split sizes for time periods is greater than 1.0. Current total: %s", split_time_float_total)
            raise ValueError("Total value of used float split sizes for time periods can't be greater than 1.0.")

        self.logger.debug("Time-based configuration validated successfully.")

    def _update_sliding_window(self, sliding_window_size: int | None, sliding_window_prediction_size: int | None, sliding_window_step: int | None, set_shared_size: float | int, all_time_ids: np.ndarray):
        if isinstance(set_shared_size, float):
            assert set_shared_size >= 0 and set_shared_size <= 1, "set_shared_size float value must be between or equal to 0 and 1."
            set_shared_size = int(len(all_time_ids) * set_shared_size)

        assert set_shared_size >= 0, "set_shared_size must be of positive value."

        # Ensure sliding_window_size is either None or a valid integer greater than 1
        assert sliding_window_size is None or (isinstance(sliding_window_size, int) and sliding_window_size > 1), "sliding_window_size must be an integer greater than 1, or None."

        # Ensure sliding_window_prediction_size is either None or a valid integer greater or equal to 1
        assert sliding_window_prediction_size is None or (isinstance(sliding_window_prediction_size, int) and sliding_window_prediction_size >= 1), "sliding_window_prediction_size must be an integer greater than 1, or None."

        # Both sliding_window_size and sliding_window_prediction_size must be set or None
        assert (sliding_window_size is None and sliding_window_prediction_size is None) or (sliding_window_size is not None and sliding_window_prediction_size is not None), "Both sliding_window_size and sliding_window_prediction_size must be set or None."

        # Adjust batch sizes based on sliding_window_size
        if sliding_window_size is not None:

            if sliding_window_step <= 0:
                raise ValueError("sliding_window_step must be greater or equal to 1.")

            if set_shared_size == self.set_shared_size:
                if self.has_train and len(self.train_time_period) < sliding_window_size + sliding_window_prediction_size:
                    raise ValueError("New sliding window size + prediction size is larger than the number of times in train_time_period.")

                if self.has_val and len(self.val_time_period) < sliding_window_size + sliding_window_prediction_size:
                    raise ValueError("New sliding window size + prediction size is larger than the number of times in val_time_period.")

                if self.has_test and len(self.test_time_period) < sliding_window_size + sliding_window_prediction_size:
                    raise ValueError("New sliding window size + prediction size is larger than the number of times in test_time_period.")

                if self.has_all and len(self.all_time_period) < sliding_window_size + sliding_window_prediction_size:
                    raise ValueError("New sliding window size + prediction size is larger than the number of times in all_time_period.")

            total_window_size = sliding_window_size + sliding_window_prediction_size

            if total_window_size > self.train_batch_size:
                self.train_batch_size = sliding_window_size + sliding_window_prediction_size
                self.logger.info("train_batch_size adjusted to %s as it should be greater than or equal to sliding_window_size + sliding_window_prediction_size.", total_window_size)
            if total_window_size > self.val_batch_size:
                self.val_batch_size = sliding_window_size + sliding_window_prediction_size
                self.logger.info("val_batch_size adjusted to %s as it should be greater than or equal to sliding_window_size + sliding_window_prediction_size.", total_window_size)
            if total_window_size > self.test_batch_size:
                self.test_batch_size = sliding_window_size + sliding_window_prediction_size
                self.logger.info("test_batch_size adjusted to %s as it should be greater than or equal to sliding_window_size + sliding_window_prediction_size.", total_window_size)
            if total_window_size > self.all_batch_size:
                self.all_batch_size = sliding_window_size + sliding_window_prediction_size
                self.logger.info("all_batch_size adjusted to %s as it should be greater than or equal to sliding_window_size + sliding_window_prediction_size.", total_window_size)

        self.sliding_window_size = sliding_window_size
        self.sliding_window_prediction_size = sliding_window_prediction_size
        self.sliding_window_step = sliding_window_step
        self.set_shared_size = set_shared_size

    def _get_train(self) -> tuple[np.ndarray, np.ndarray] | tuple[None, None]:
        """Returns the indices corresponding to the training set. """
        return self.ts_ids, self.train_time_period

    def _get_val(self) -> tuple[np.ndarray, np.ndarray] | tuple[None, None]:
        """Returns the indices corresponding to the validation set. """
        return self.ts_ids, self.val_time_period

    def _get_test(self) -> tuple[np.ndarray, np.ndarray] | tuple[None, None]:
        """Returns the indices corresponding to the test set. """
        return self.ts_ids, self.test_time_period

    def _get_all(self) -> tuple[np.ndarray, np.ndarray] | tuple[None, None]:
        """Returns the indices corresponding to the all set. """
        return self.ts_ids, self.all_time_period

    def _get_test_other(self) -> tuple[np.ndarray, np.ndarray] | tuple[None, None]:
        """Returns the indices corresponding to the test_other set. """
        return self.test_ts_ids, self.test_time_period

    def _set_time_period(self, all_time_ids: np.ndarray) -> None:
        """Validates and filters `train_time_period`, `val_time_period`, `test_time_period` and `all_time_period` based on `dataset` and `aggregation`. """

        if isinstance(self.set_shared_size, float):
            self.set_shared_size = int(len(all_time_ids) * self.set_shared_size)
            self.logger.debug("Converted set_shared_size from float to int value.")

        times_to_share = None

        # Used when periods are set with float
        start = 0
        end = len(all_time_ids)

        if isinstance(self.train_time_period, float):
            offset_from_start = int(end * self.train_time_period)
            self.train_time_period = range(start, start + offset_from_start)
            start += offset_from_start
            self.logger.debug("train_time_period set with float value. Using range: %s", self.train_time_period)

        # Process and validate train time period
        self.train_time_period, self.display_train_time_period = self._process_time_period(self.train_time_period, all_time_ids, times_to_share)
        self.has_train = self.train_time_period is not None

        if self.has_train:
            if self.sliding_window_size is not None and len(self.train_time_period) < self.sliding_window_size + self.sliding_window_prediction_size:
                raise ValueError("Sliding window size + prediction size is larger than the number of times in train_time_period.")
            self.logger.debug("Processed train_time_period: %s, display_train_time_period: %s", self.train_time_period, self.display_train_time_period)
            if self.set_shared_size > 0:
                if self.set_shared_size >= len(self.train_time_period):
                    times_to_share = self.train_time_period[0: len(self.train_time_period)]
                    times_to_share = all_time_ids[times_to_share[ID_TIME_COLUMN_NAME]]
                    self.logger.warning("Whole training set will be shared to the next set. Consider increasing train_time_period or lowering set_shared_size. Current set_shared_size in count value is %s", self.set_shared_size)
                else:
                    times_to_share = self.train_time_period[-self.set_shared_size:len(self.train_time_period)]
                    times_to_share = all_time_ids[times_to_share[ID_TIME_COLUMN_NAME]]

        if isinstance(self.val_time_period, float):
            offset_from_start = int(end * self.val_time_period)
            self.val_time_period = range(start, start + offset_from_start)
            start += offset_from_start
            self.logger.debug("val_time_period set with float value. Using range: %s", self.val_time_period)

        # Process and validate validation time period
        self.val_time_period, self.display_val_time_period = self._process_time_period(self.val_time_period, all_time_ids, times_to_share)
        self.has_val = self.val_time_period is not None

        if self.has_val:
            if self.sliding_window_size is not None and len(self.val_time_period) < self.sliding_window_size + self.sliding_window_prediction_size:
                raise ValueError("Sliding window size + prediction size is larger than the number of times in val_time_period.")
            self.logger.debug("Processed val_time_period: %s, display_val_time_period: %s", self.val_time_period, self.display_val_time_period)
            if self.set_shared_size > 0:
                if self.set_shared_size >= len(self.val_time_period):
                    times_to_share = self.val_time_period[0: len(self.val_time_period)]
                    times_to_share = all_time_ids[times_to_share[ID_TIME_COLUMN_NAME]]
                    self.logger.warning("Whole validation set will be shared to the next set. Consider increasing val_time_period or lowering set_shared_size. Current set_shared_size in count value is %s", self.set_shared_size)
                else:
                    times_to_share = self.val_time_period[-self.set_shared_size:len(self.val_time_period)]
                    times_to_share = all_time_ids[times_to_share[ID_TIME_COLUMN_NAME]]

        if isinstance(self.test_time_period, float):
            offset_from_start = int(end * self.test_time_period)
            self.test_time_period = range(start, start + offset_from_start)
            start += offset_from_start
            self.logger.debug("test_time_period set with float value. Using range: %s", self.test_time_period)

        # Process and validate test time period
        self.test_time_period, self.display_test_time_period = self._process_time_period(self.test_time_period, all_time_ids, times_to_share)
        self.has_test = self.test_time_period is not None

        if self.has_test:
            if self.sliding_window_size is not None and len(self.test_time_period) < self.sliding_window_size + self.sliding_window_prediction_size:
                raise ValueError("Sliding window size + prediction size is larger than the number of times in test_time_period.")
            self.logger.debug("Processed test_time_period: %s, display_test_time_period: %s", self.test_time_period, self.display_test_time_period)

        if not self.has_train and not self.has_val and not self.has_test:
            self.all_time_period = all_time_ids.copy()
            self.all_time_period = self._set_time_period_form(self.all_time_period, all_time_ids)
            self.logger.info("Using all times for all_time_period because train_time_period, val_time_period, and test_time_period are all set to None.")
        else:
            for temp_time_period in [self.train_time_period, self.val_time_period, self.test_time_period]:
                if temp_time_period is None:
                    continue
                elif self.all_time_period is None:
                    self.all_time_period = temp_time_period.copy()
                else:
                    self.all_time_period = np.concatenate((self.all_time_period, temp_time_period))

            if self.has_train:
                self.logger.debug("all_time_period includes values from train_time_period.")
            if self.has_val:
                self.logger.debug("all_time_period includes values from val_time_period.")
            if self.has_test:
                self.logger.debug("all_time_period includes values from test_time_period.")

            self.all_time_period = np.unique(self.all_time_period)

        self.has_all = self.all_time_period is not None

        if self.has_all:
            self.display_all_time_period = range(self.all_time_period[ID_TIME_COLUMN_NAME][0], self.all_time_period[ID_TIME_COLUMN_NAME][-1] + 1)
            if self.sliding_window_size is not None and len(self.all_time_period) < self.sliding_window_size + self.sliding_window_prediction_size:
                raise ValueError("Sliding window size + prediction size is larger than the number of times in all_time_period.")
            self.logger.debug("Processed all_time_period: %s, display_all_time_period: %s", self.all_time_period, self.display_all_time_period)

    def _set_ts(self, all_ts_ids: np.ndarray, all_ts_row_ranges: np.ndarray) -> None:
        """ Validates and filters inputted time series id from `ts_ids` and `test_ts_ids` based on `dataset` and `source_type`. Handles random set."""

        random_ts_ids = all_ts_ids[self.ts_id_name]
        random_indices = np.arange(len(all_ts_ids))

        # Process ts_ids if it was specified with times series ids
        if not isinstance(self.ts_ids, (float, int)):
            self.ts_ids, self.ts_row_ranges, _ = self._process_ts_ids(self.ts_ids, all_ts_ids, all_ts_row_ranges, None, None)
            self.has_ts_ids = True

            mask = np.isin(random_ts_ids, self.ts_ids, invert=True)
            random_ts_ids = random_ts_ids[mask]
            random_indices = random_indices[mask]

            self.logger.debug("ts_ids set: %s", self.ts_ids)

        # Process test_ts_ids if it was specified with times series ids
        if self.test_ts_ids is not None and not isinstance(self.test_ts_ids, (float, int)):
            self.test_ts_ids, self.test_ts_row_ranges, _ = self._process_ts_ids(self.test_ts_ids, all_ts_ids, all_ts_row_ranges, None, None)
            self.has_test_ts_ids = True

            mask = np.isin(random_ts_ids, self.test_ts_ids, invert=True)
            random_ts_ids = random_ts_ids[mask]
            random_indices = random_indices[mask]

            self.logger.debug("test_ts_ids set: %s", self.test_ts_ids)

        # Convert proportions to total values
        if isinstance(self.ts_ids, float):
            self.ts_ids = int(self.ts_ids * len(random_ts_ids))
            self.logger.debug("ts_ids converted to total values: %s", self.ts_ids)
        if isinstance(self.test_ts_ids, float):
            self.test_ts_ids = int(self.test_ts_ids * len(random_ts_ids))
            self.logger.debug("test_ts_ids converted to total values: %s", self.test_ts_ids)

        # Process random ts_ids if it is to be randomly made
        if isinstance(self.ts_ids, int):
            self.ts_ids, self.ts_row_ranges, random_indices = self._process_ts_ids(None, all_ts_ids, all_ts_row_ranges, self.ts_ids, random_indices)
            self.has_ts_ids = True
            self.logger.debug("Random ts_ids set with %s time series.", self.ts_ids)

        # Process random test_ts_ids if it is to be randomly made
        if isinstance(self.test_ts_ids, int):
            self.test_ts_ids, self.test_ts_row_ranges, random_indices = self._process_ts_ids(None, all_ts_ids, all_ts_row_ranges, self.test_ts_ids, random_indices)
            self.has_test_ts_ids = True
            self.logger.debug("Random test_ts_ids set with %s time series.", self.test_ts_ids)

    def _set_feature_scalers(self) -> None:
        """Creates and/or validates scalers based on the `scale_with` parameter. """

        if self.scale_with is None:
            self.scale_with_display = None
            self.are_scalers_premade = False
            self.scalers = None
            self.is_scaler_custom = None

            self.logger.debug("No scaler will be used because scale_with is not set.")
            return

        if not self.has_train:
            if self.partial_fit_initialized_scalers:
                self.logger.warning("partial_fit_initialized_scalers will be ignored because train set is not used.")
            self.partial_fit_initialized_scalers = False

        # Treat scale_with as a list of initialized scalers
        if isinstance(self.scale_with, (list, np.ndarray)):
            self.create_scaler_per_time_series = True

            self.scalers = np.array(self.scale_with)
            self.scale_with = None

            assert len(self.scalers) == len(self.ts_ids), "Number of time series in ts_ids does not match with number of provided scalers."

            # Ensure that all scalers in the list are of the same type
            for scaler in self.scalers:
                if isinstance(scaler, (type, ScalerType)):
                    raise ValueError("scaler_with as a list of scalers must contain only initialized scalers.")

                new_scale_with, self.scale_with_display = scaler_from_input_to_scaler_type(type(scaler), check_for_fit=False, check_for_partial_fit=self.partial_fit_initialized_scalers)

                if self.scale_with is None:
                    self.scale_with = new_scale_with
                elif self.scale_with != new_scale_with:
                    raise ValueError("Scalers in scale_with must all be of the same type.")

            self.are_scalers_premade = True

            self.is_scaler_custom = "Custom" in self.scale_with_display
            self.logger.debug("Using list of initialized scalers of type: %s", self.scale_with_display)

        # Treat scale_with as already initialized scaler
        elif not isinstance(self.scale_with, (type, ScalerType)):
            self.create_scaler_per_time_series = False

            self.scalers = self.scale_with

            self.scale_with, self.scale_with_display = scaler_from_input_to_scaler_type(type(self.scale_with), check_for_fit=False, check_for_partial_fit=self.partial_fit_initialized_scalers)

            self.are_scalers_premade = True

            self.is_scaler_custom = "Custom" in self.scale_with_display
            self.logger.debug("Using initialized scaler of type: %s", self.scale_with_display)

        # Treat scale_with as uninitialized scaler
        else:
            if not self.has_train:
                self.scale_with = None
                self.scale_with_display = None
                self.are_scalers_premade = False
                self.scalers = None
                self.is_scaler_custom = None

                self.logger.warning("No scaler will be used because train set is not used.")
                return

            self.scale_with, self.scale_with_display = scaler_from_input_to_scaler_type(self.scale_with, check_for_fit=self.create_scaler_per_time_series, check_for_partial_fit=not self.create_scaler_per_time_series)

            self.are_scalers_premade = False

            self.is_scaler_custom = "Custom" in self.scale_with_display
            if self.create_scaler_per_time_series:
                self.scalers = np.array([self.scale_with() for _ in self.ts_ids])
                self.logger.debug("Using list of uninitialized scalers of type: %s", self.scale_with_display)
            else:
                self.scalers = self.scale_with()
                self.logger.debug("Using uninitialized scaler of type: %s", self.scale_with_display)

    def _set_fillers(self) -> None:
        """Creates and/or validates fillers based on the `fill_missing_with` parameter. """

        self.fill_missing_with, self.fill_missing_with_display = filler_from_input_to_type(self.fill_missing_with)
        self.is_filler_custom = "Custom" in self.fill_missing_with_display if self.fill_missing_with is not None else None

        if self.fill_missing_with is None:
            self.logger.debug("No filler is used because fill_missing_with is set to None.")
            return

        # Set the fillers for the training set
        if self.has_train:
            self.train_fillers = np.array([self.fill_missing_with(self.features_to_take_without_ids) for _ in self.ts_ids])
            self.logger.debug("Fillers for training set are set.")

        # Set the fillers for the validation set
        if self.has_val:
            self.val_fillers = np.array([self.fill_missing_with(self.features_to_take_without_ids) for _ in self.ts_ids])
            self.logger.debug("Fillers for validation set are set.")

        # Set the fillers for the test set
        if self.has_test:
            self.test_fillers = np.array([self.fill_missing_with(self.features_to_take_without_ids) for _ in self.ts_ids])
            self.logger.debug("Fillers for test set are set.")

        # Set the fillers for the all set
        if self.has_all:
            self.all_fillers = np.array([self.fill_missing_with(self.features_to_take_without_ids) for _ in self.ts_ids])
            self.logger.debug("Fillers for all set are set.")

        # Set the fillers for the test_other set
        if self.has_test_ts_ids:
            self.other_test_fillers = np.array([self.fill_missing_with(self.features_to_take_without_ids) for _ in self.test_ts_ids])
            self.logger.debug("Fillers for other_test set are set.")

    def _validate_finalization(self) -> None:
        """ Performs final validation of the configuration. Validates if `train/val/test` are continuos and that there are no overlapping time series ids in `ts_ids` and `test_ts_ids`."""

        previous_first_time_id = None
        previous_last_time_id = None

        # Validates if time periods are continuos
        for time_period in [self.train_time_period, self.val_time_period, self.test_time_period]:
            if time_period is None:
                continue

            current_first_time_id = time_period[0][ID_TIME_COLUMN_NAME]
            current_last_time_id = time_period[-1][ID_TIME_COLUMN_NAME]

            # Check if the first time ID is valid in relation to the previous time period's first time ID
            if previous_first_time_id is not None:
                if current_first_time_id < previous_first_time_id:
                    self.logger.error("Starting time ids of train/val/test must follow this rule: train < val < test")
                    raise ValueError(f"Starting time ids of train/val/test must follow this rule: train < val < test. "
                                     f"Current first time ID: {current_first_time_id}, previous first time ID: {previous_first_time_id}")

                if current_first_time_id > previous_last_time_id + 1:
                    self.logger.error("Starting time ids of train/val/test must be smaller or equal to last_id(next_split) + 1")
                    raise ValueError(f"Starting time ids of train/val/test must be smaller or equal to last_id(next_split) + 1. "
                                     f"Current first time ID: {current_first_time_id}, previous last time ID: {previous_last_time_id}")

            # Check if the last time ID is valid in relation to the previous time period's last time ID
            if previous_last_time_id is not None:
                if current_last_time_id < previous_last_time_id:
                    self.logger.error("Last time ids of train/val/test must be equal or larger than last_id(next_split)")
                    raise ValueError(f"Last time ids of train/val/test must be equal or larger than last_id(next_split). "
                                     f"Current last time ID: {current_last_time_id}, previous last time ID: {previous_last_time_id}")

            previous_first_time_id = current_first_time_id
            previous_last_time_id = current_last_time_id

        if self.scale_with is not None and self.create_scaler_per_time_series and self.test_ts_ids is not None:
            self.logger.warning("Scalers won't be used on time series in test_ts_ids, if create_scaler_per_time_series is true.")

        # Check for overlap between ts_ids and test_ts_ids
        if self.ts_ids is not None and self.test_ts_ids is not None:
            mask = np.isin(self.ts_ids, self.test_ts_ids)
            if len(self.ts_ids[mask]) > 0:
                self.logger.error("ts_ids and test_ts_ids can't have the same IDs!")
                raise ValueError(f"ts_ids and test_ts_ids can't have the same IDs. Overlapping IDs: {self.ts_ids[mask]}")

    def __str__(self) -> str:

        if self.scale_with is None:
            scaler_part = f"Scaler type: {str(self.scale_with_display)}"
        else:
            scaler_part = f'''Scaler type: {str(self.scale_with_display)}
        Is scaler per Time series: {self.create_scaler_per_time_series}
        Are scalers premade: {self.are_scalers_premade}
        Are premade scalers partial_fitted: {self.partial_fit_initialized_scalers}'''

        if self.include_time:
            time_part = f'''Time included: {str(self.include_time)}    
        Time format: {str(self.time_format)}'''
        else:
            time_part = f"Time included: {str(self.include_time)}"

        return f'''
Config Details
    Used for database: {self.database_name}
    Aggregation: {str(self.aggregation)}
    Source: {str(self.source_type)}

    Time series
        Time series IDS: {get_abbreviated_list_string(self.ts_ids)}
        Test time series IDS: {get_abbreviated_list_string(self.test_ts_ids)}
    Time periods
        Train time periods: {str(self.display_train_time_period)}
        Val time periods: {str(self.display_val_time_period)}
        Test time periods: {str(self.display_test_time_period)}
        All time periods: {str(self.display_all_time_period)}
    Features
        Taken features: {str(self.features_to_take_without_ids)}
        Default values: {self.default_values}
        Time series ID included: {str(self.include_ts_id)}
        {time_part}
    Sliding window
        Sliding window size: {self.sliding_window_size}
        Sliding window prediction size: {self.sliding_window_prediction_size}
        Sliding window step size: {self.sliding_window_step}
        Set shared size: {self.set_shared_size}
    Fillers
        Filler type: {str(self.fill_missing_with_display)}
    Scalers
        {scaler_part}
    Batch sizes
        Train batch size: {self.train_batch_size}
        Val batch size: {self.val_batch_size}
        Test batch size: {self.test_batch_size}
        All batch size: {self.all_batch_size}
    Default workers
        Init worker count: {str(self.init_workers)}
        Train worker count: {str(self.train_workers)}
        Val worker count: {str(self.val_workers)}
        Test worker count: {str(self.test_workers)}
        All worker count: {str(self.all_workers)}
    Other
        Nan threshold: {str(self.nan_threshold)}
        Random state: {self.random_state}
                '''