Skip to content

Series-based config class

cesnet_tszoo.configs.series_based_config.SeriesBasedConfig

Bases: DatasetConfig

This class is used for configuring the SeriesBasedCesnetDataset.

Used to configure the following:

  • Train, validation, test, all sets (time period, sizes, features)
  • Handling missing values (default values, fillers)
  • Data transformation using scalers
  • Dataloader options (train/val/test/all/init workers, batch size, train loading order)
  • Plotting

Important Notes:

  • Custom fillers must inherit from the fillers base class.
  • Fillers can carry over values from the train set to the validation and test sets. For example, ForwardFiller can carry over values from previous sets.
  • It is recommended to use the scalers base class, though this is not mandatory as long as it meets the required methods.
    • If a scaler is already initialized and partial_fit_initialized_scalers is False, the scaler does not require partial_fit.
    • Otherwise, the scaler must support partial_fit.
    • Scalers must implement transform method.
    • Both partial_fit and transform methods must accept an input of type np.ndarray with shape (times, features).
  • train_ts, val_ts, and test_ts must not contain any overlapping time series IDs.

For available configuration options, refer to here.

Attributes:

Name Type Description
used_train_workers

Tracks the number of train workers in use. Helps determine if the train dataloader should be recreated based on worker changes.

used_val_workers

Tracks the number of validation workers in use. Helps determine if the validation dataloader should be recreated based on worker changes.

used_test_workers

Tracks the number of test workers in use. Helps determine if the test dataloader should be recreated based on worker changes.

used_all_workers

Tracks the total number of all workers in use. Helps determine if the all dataloader should be recreated based on worker changes.

import_identifier

Tracks the name of the config upon import. None if not imported.

logger

Logger for displaying information.

The following attributes are initialized when set_dataset_config_and_initialize is called:

Attributes:

Name Type Description
all_ts

If no specific sets (train/val/test) are provided, all time series IDs are used. When any set is defined, only the time series IDs in defined sets are used.

train_ts_row_ranges

Initialized when train_ts_id is set. Contains time series IDs in train set with their respective time ID ranges.

val_ts_row_ranges

Initialized when val_ts_id is set. Contains time series IDs in validation set with their respective time ID ranges.

test_ts_row_ranges

Initialized when test_ts is set. Contains time series IDs in test set with their respective time ID ranges.

all_ts_row_ranges

Initialized when all_ts is set. Contains time series IDs in all set with their respective time ID ranges.

display_time_period

Used to display the configured value of time_period.

aggregation

The aggregation period used for the data.

source_type

The source type of the data.

database_name

Specifies which database this config applies to.

scale_with_display

Used to display the configured type of scale_with.

fill_missing_with_display

Used to display the configured type of fill_missing_with.

features_to_take_without_ids

Features to be returned, excluding time or time series IDs.

indices_of_features_to_take_no_ids

Indices of non-ID features in features_to_take.

is_scaler_custom

Flag indicating whether the scaler is custom.

is_filler_custom

Flag indicating whether the filler is custom.

ts_id_name

Name of the time series ID, dependent on source_type.

used_times

List of all times used in the configuration.

used_ts_ids

List of all time series IDs used in the configuration.

used_ts_row_ranges

List of time series IDs with their respective time ID ranges.

used_fillers

List of all fillers used in the configuration.

used_singular_train_time_series

Currently used singular train set time series for dataloader.

used_singular_val_time_series

Currently used singular validation set time series for dataloader.

used_singular_test_time_series

Currently used singular test set time series for dataloader.

used_singular_all_time_series

Currently used singular all set time series for dataloader.

scalers

Prepared scalers for fitting/transforming. Can be one scaler, array of scalers or None.

are_scalers_premade

Indicates whether the scalers are premade.

has_train

Flag indicating whether the training set is in use.

has_val

Flag indicating whether the validation set is in use.

has_test

Flag indicating whether the test set is in use.

has_all

Flag indicating whether the all set is in use.

train_fillers

Fillers used in the train set. None if no filler is used or train set is not used.

val_fillers

Fillers used in the validation set. None if no filler is used or validation set is not used.

test_fillers

Fillers used in the test set. None if no filler is used or test set is not used.

all_fillers

Fillers used for the all set. None if no filler is used or all set is not used.

is_initialized

Flag indicating if the configuration has already been initialized. If true, config initialization will be skipped.

Configuration options

Attributes:

Name Type Description
time_period

Defines the time period for returning data from train/val/test/all. Can be a range of time IDs, a tuple of datetime objects or a float. Float value is equivalent to percentage of available times from start.

train_ts

Defines which time series IDs are used in the training set. Can be a list of IDs, or an integer/float to specify a random selection. An int specifies the number of random time series, and a float specifies the proportion of available time series. int and float must be greater than 0, and a float should be smaller or equal to 1.0. Using int or float guarantees that no time series from other sets will be used. Default: None

val_ts

Defines which time series IDs are used in the validation set. Same as train_ts but for the validation set. Default: None

test_ts

Defines which time series IDs are used in the test set. Same as train_ts but for the test set. Default: None

features_to_take

Defines which features are used. Default: "all"

default_values

Default values for missing data, applied before fillers. Can set one value for all features or specify for each feature. Default: "default"

train_batch_size

Batch size for the train dataloader. Affects number of returned time series in one batch. Default: 32

val_batch_size

Batch size for the validation dataloader. Affects number of returned time series in one batch. Default: 64

test_batch_size

Batch size for the test dataloader. Affects number of returned time series in one batch. Default: 128

all_batch_size

Batch size for the all dataloader. Affects number of returned time series in one batch. Default: 128

fill_missing_with

Defines how to fill missing values in the dataset. Can pass enum FillerType for built-in filler or pass a type of custom filler that must derive from Filler base class. Default: None

scale_with

Defines the scaler used to transform the dataset. Can pass enum ScalerType for built-in scaler, pass a type of custom scaler or instance of already fitted scaler. Default: None

partial_fit_initialized_scaler

If True, partial fitting on train set is performed when using initiliazed scaler. Default: False

include_time

If True, time data is included in the returned values. Default: True

include_ts_id

If True, time series IDs are included in the returned values. Default: True

time_format

Format for the returned time data. When using TimeFormat.DATETIME, time will be returned as separate list along rest of the values. Default: TimeFormat.ID_TIME

train_workers

Number of workers for loading training data. 0 means that the data will be loaded in the main process. Default: 4

val_workers

Number of workers for loading validation data. 0 means that the data will be loaded in the main process. Default: 3

test_workers

Number of workers for loading test data. 0 means that the data will be loaded in the main process. Default: 2

all_workers

Number of workers for loading all data. 0 means that the data will be loaded in the main process. Default: 4

init_workers

Number of workers for initial dataset processing during configuration. 0 means that the data will be loaded in the main process. Default: 4

nan_threshold

Maximum allowable percentage of missing data. Time series exceeding this threshold are excluded. Time series over the threshold will not be used. Used for train/val/test/all separately. Default: 1.0

train_dataloader_order

Defines the order of data returned by the training dataloader. Default: DataloaderOrder.SEQUENTIAL

random_state

Fixes randomness for reproducibility during configuration and dataset initialization. Default: None

Source code in cesnet_tszoo\configs\series_based_config.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
class SeriesBasedConfig(DatasetConfig):
    """
    This class is used for configuring the [`SeriesBasedCesnetDataset`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset].

    Used to configure the following:

    - Train, validation, test, all sets (time period, sizes, features)
    - Handling missing values (default values, [`fillers`][cesnet_tszoo.utils.filler])
    - Data transformation using [`scalers`][cesnet_tszoo.utils.scaler]
    - Dataloader options (train/val/test/all/init workers, batch size, train loading order)
    - Plotting

    **Important Notes:**

    - Custom fillers must inherit from the [`fillers`][cesnet_tszoo.utils.filler.Filler] base class.
    - Fillers can carry over values from the train set to the validation and test sets. For example, [`ForwardFiller`][cesnet_tszoo.utils.filler.ForwardFiller] can carry over values from previous sets.
    - It is recommended to use the [`scalers`][cesnet_tszoo.utils.scaler.Scaler] base class, though this is not mandatory as long as it meets the required methods.
        - If a scaler is already initialized and `partial_fit_initialized_scalers` is `False`, the scaler does not require `partial_fit`.
        - Otherwise, the scaler must support `partial_fit`.
        - Scalers must implement `transform` method.
        - Both `partial_fit` and `transform` methods must accept an input of type `np.ndarray` with shape `(times, features)`.
    - `train_ts`, `val_ts`, and `test_ts` must not contain any overlapping time series IDs.

    For available configuration options, refer to [here][cesnet_tszoo.configs.series_based_config.SeriesBasedConfig--configuration-options].

    Attributes:
        used_train_workers: Tracks the number of train workers in use. Helps determine if the train dataloader should be recreated based on worker changes.
        used_val_workers: Tracks the number of validation workers in use. Helps determine if the validation dataloader should be recreated based on worker changes.
        used_test_workers: Tracks the number of test workers in use. Helps determine if the test dataloader should be recreated based on worker changes.
        used_all_workers: Tracks the total number of all workers in use. Helps determine if the all dataloader should be recreated based on worker changes.
        import_identifier: Tracks the name of the config upon import. None if not imported.
        logger: Logger for displaying information.   

    The following attributes are initialized when [`set_dataset_config_and_initialize`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.set_dataset_config_and_initialize] is called:

    Attributes:
        all_ts: If no specific sets (train/val/test) are provided, all time series IDs are used. When any set is defined, only the time series IDs in defined sets are used.
        train_ts_row_ranges: Initialized when `train_ts_id` is set. Contains time series IDs in train set with their respective time ID ranges.
        val_ts_row_ranges: Initialized when `val_ts_id` is set. Contains time series IDs in validation set with their respective time ID ranges.
        test_ts_row_ranges: Initialized when `test_ts` is set. Contains time series IDs in test set with their respective time ID ranges.
        all_ts_row_ranges: Initialized when `all_ts` is set. Contains time series IDs in all set with their respective time ID ranges.
        display_time_period: Used to display the configured value of `time_period`.

        aggregation: The aggregation period used for the data.
        source_type: The source type of the data.
        database_name: Specifies which database this config applies to.
        scale_with_display: Used to display the configured type of `scale_with`.
        fill_missing_with_display: Used to display the configured type of `fill_missing_with`.
        features_to_take_without_ids: Features to be returned, excluding time or time series IDs.
        indices_of_features_to_take_no_ids: Indices of non-ID features in `features_to_take`.
        is_scaler_custom: Flag indicating whether the scaler is custom.
        is_filler_custom: Flag indicating whether the filler is custom.
        ts_id_name: Name of the time series ID, dependent on `source_type`.
        used_times: List of all times used in the configuration.
        used_ts_ids: List of all time series IDs used in the configuration.
        used_ts_row_ranges: List of time series IDs with their respective time ID ranges.
        used_fillers: List of all fillers used in the configuration.
        used_singular_train_time_series: Currently used singular train set time series for dataloader.
        used_singular_val_time_series: Currently used singular validation set time series for dataloader.
        used_singular_test_time_series: Currently used singular test set time series for dataloader.
        used_singular_all_time_series: Currently used singular all set time series for dataloader.             
        scalers: Prepared scalers for fitting/transforming. Can be one scaler, array of scalers or `None`.
        are_scalers_premade: Indicates whether the scalers are premade.
        has_train: Flag indicating whether the training set is in use.
        has_val: Flag indicating whether the validation set is in use.
        has_test: Flag indicating whether the test set is in use.
        has_all: Flag indicating whether the all set is in use.
        train_fillers: Fillers used in the train set. `None` if no filler is used or train set is not used.
        val_fillers: Fillers used in the validation set. `None` if no filler is used or validation set is not used.
        test_fillers: Fillers used in the test set. `None` if no filler is used or test set is not used.
        all_fillers: Fillers used for the all set. `None` if no filler is used or all set is not used.
        is_initialized: Flag indicating if the configuration has already been initialized. If true, config initialization will be skipped.          

    # Configuration options

    Attributes:
        time_period: Defines the time period for returning data from `train/val/test/all`. Can be a range of time IDs, a tuple of datetime objects or a float. Float value is equivalent to percentage of available times from start.
        train_ts: Defines which time series IDs are used in the training set. Can be a list of IDs, or an integer/float to specify a random selection. An `int` specifies the number of random time series, and a `float` specifies the proportion of available time series. 
                  `int` and `float` must be greater than 0, and a float should be smaller or equal to 1.0. Using `int` or `float` guarantees that no time series from other sets will be used. `Default: None`
        val_ts: Defines which time series IDs are used in the validation set. Same as `train_ts` but for the validation set. `Default: None`
        test_ts: Defines which time series IDs are used in the test set. Same as `train_ts` but for the test set. `Default: None`           
        features_to_take: Defines which features are used. `Default: "all"`
        default_values: Default values for missing data, applied before fillers. Can set one value for all features or specify for each feature. `Default: "default"`
        train_batch_size: Batch size for the train dataloader. Affects number of returned time series in one batch. `Default: 32`
        val_batch_size: Batch size for the validation dataloader. Affects number of returned time series in one batch. `Default: 64`
        test_batch_size: Batch size for the test dataloader. Affects number of returned time series in one batch. `Default: 128`
        all_batch_size: Batch size for the all dataloader. Affects number of returned time series in one batch. `Default: 128`         
        fill_missing_with: Defines how to fill missing values in the dataset. Can pass enum [`FillerType`][cesnet_tszoo.utils.enums.FillerType] for built-in filler or pass a type of custom filler that must derive from [`Filler`][cesnet_tszoo.utils.filler.Filler] base class. `Default: None`
        scale_with: Defines the scaler used to transform the dataset. Can pass enum [`ScalerType`][cesnet_tszoo.utils.enums.ScalerType] for built-in scaler, pass a type of custom scaler or instance of already fitted scaler. `Default: None`
        partial_fit_initialized_scaler: If `True`, partial fitting on train set is performed when using initiliazed scaler. `Default: False`
        include_time: If `True`, time data is included in the returned values. `Default: True`
        include_ts_id: If `True`, time series IDs are included in the returned values. `Default: True`
        time_format: Format for the returned time data. When using TimeFormat.DATETIME, time will be returned as separate list along rest of the values. `Default: TimeFormat.ID_TIME`
        train_workers: Number of workers for loading training data. `0` means that the data will be loaded in the main process. `Default: 4`
        val_workers: Number of workers for loading validation data. `0` means that the data will be loaded in the main process. `Default: 3`
        test_workers: Number of workers for loading test data. `0` means that the data will be loaded in the main process. `Default: 2`
        all_workers: Number of workers for loading all data. `0` means that the data will be loaded in the main process. `Default: 4`
        init_workers: Number of workers for initial dataset processing during configuration. `0` means that the data will be loaded in the main process. `Default: 4`
        nan_threshold: Maximum allowable percentage of missing data. Time series exceeding this threshold are excluded. Time series over the threshold will not be used. Used for `train/val/test/all` separately. `Default: 1.0`
        train_dataloader_order: Defines the order of data returned by the training dataloader. `Default: DataloaderOrder.SEQUENTIAL`
        random_state: Fixes randomness for reproducibility during configuration and dataset initialization. `Default: None`                  
    """

    def __init__(self,
                 time_period: tuple[datetime, datetime] | range | float | Literal["all"],
                 train_ts: list[int] | npt.NDArray[np.int_] | float | int | None = None,
                 val_ts: list[int] | npt.NDArray[np.int_] | float | int | None = None,
                 test_ts: list[int] | npt.NDArray[np.int_] | float | int | None = None,
                 features_to_take: list[str] | Literal["all"] = "all",
                 default_values: list[Number] | npt.NDArray[np.number] | dict[str, Number] | Number | Literal["default"] | None = "default",
                 train_batch_size: int = 32,
                 val_batch_size: int = 64,
                 test_batch_size: int = 128,
                 all_batch_size: int = 128,
                 fill_missing_with: type | FillerType | Literal["mean_filler", "forward_filler", "linear_interpolation_filler"] | None = None,
                 scale_with: type | ScalerType | Scaler | Literal["min_max_scaler", "standard_scaler", "max_abs_scaler", "log_scaler", "l2_normalizer"] | None = None,
                 partial_fit_initialized_scaler: bool = False,
                 include_time: bool = True,
                 include_ts_id: bool = True,
                 time_format: TimeFormat | Literal["id_time", "datetime", "unix_time", "shifted_unix_time"] = TimeFormat.ID_TIME,
                 train_workers: int = 4,
                 val_workers: int = 3,
                 test_workers: int = 2,
                 all_workers: int = 4,
                 init_workers: int = 4,
                 nan_threshold: float = 1.0,
                 train_dataloader_order: DataloaderOrder | Literal["random", "sequential"] = DataloaderOrder.SEQUENTIAL,
                 random_state: int | None = None):

        self.time_period = time_period
        self.train_ts = train_ts
        self.val_ts = val_ts
        self.test_ts = test_ts

        self.all_ts = None
        self.train_ts_row_ranges = None
        self.val_ts_row_ranges = None
        self.test_ts_row_ranges = None
        self.all_ts_row_ranges = None
        self.display_time_period = None

        super(SeriesBasedConfig, self).__init__(features_to_take, default_values, None, None, 1, 0, train_batch_size, val_batch_size, test_batch_size, all_batch_size, fill_missing_with, scale_with, partial_fit_initialized_scaler, include_time, include_ts_id, time_format,
                                                train_workers, val_workers, test_workers, all_workers, init_workers, nan_threshold, False, True, train_dataloader_order, random_state)

    def _validate_construction(self) -> None:
        """Performs basic parameter validation to ensure correct configuration. More comprehensive validation, which requires dataset-specific data, is handled in [`_dataset_init`][cesnet_tszoo.configs.series_based_config.SeriesBasedConfig._dataset_init]. """

        super(SeriesBasedConfig, self)._validate_construction()

        if isinstance(self.time_period, (float, int)):
            self.time_period = float(self.time_period)
            assert self.time_period > 0.0, "time_period must be greater than 0"
            assert self.time_period <= 1.0, "time_period must be lower or equal to 1.0"

        split_float_total = 0

        if isinstance(self.train_ts, (float, int)):
            assert self.train_ts > 0, "train_ts must be greater than 0."
            if isinstance(self.train_ts, float):
                split_float_total += self.train_ts

        if isinstance(self.val_ts, (float, int)):
            assert self.val_ts > 0, "val_ts must be greater than 0"
            if isinstance(self.val_ts, float):
                split_float_total += self.val_ts

        if isinstance(self.test_ts, (float, int)):
            assert self.test_ts > 0, "test_ts must be greater than 0"
            if isinstance(self.test_ts, float):
                split_float_total += self.test_ts

        # Check if the total of float splits exceeds 1.0
        if split_float_total > 1.0:
            self.logger.error("The total of the float split sizes is greater than 1.0. Current total: %s", split_float_total)
            raise ValueError("Total value of used float split sizes can't be larger than 1.0.")

        self.logger.debug("Series-based configuration validated successfully.")

    def _get_train(self) -> tuple[np.ndarray, np.ndarray] | tuple[None, None]:
        """Returns the indices corresponding to the training set. """
        return self.train_ts, self.time_period

    def _get_val(self) -> tuple[np.ndarray, np.ndarray] | tuple[None, None]:
        """Returns the indices corresponding to the validation set. """
        return self.val_ts, self.time_period

    def _get_test(self) -> tuple[np.ndarray, np.ndarray] | tuple[None, None]:
        """Returns the indices corresponding to the test set. """
        return self.test_ts, self.time_period

    def _get_all(self) -> tuple[np.ndarray, np.ndarray] | tuple[None, None]:
        """Returns the indices corresponding to the all set. """
        return self.all_ts, self.time_period

    def _set_time_period(self, all_time_ids: np.ndarray) -> None:
        """Validates and filters the input time period based on the dataset and aggregation. """

        if self.time_period == "all":
            self.time_period = range(len(all_time_ids))
            self.logger.debug("Time period set to 'all'. Using all available time IDs, range: %s", self.time_period)
        elif isinstance(self.time_period, float):
            self.time_period = range(int(self.time_period * len(all_time_ids)))
            self.logger.debug("Time period set with float value. Using range: %s", self.time_period)

        self.time_period, self.display_time_period = self._process_time_period(self.time_period, all_time_ids)
        self.logger.debug("Processed time_period: %s, display_time_period: %s", self.time_period, self.display_time_period)

    def _set_ts(self, all_ts_ids: np.ndarray, all_ts_row_ranges: np.ndarray) -> None:
        """Validates and filters the input time series IDs based on the `dataset` and `source_type`. Handles random split."""

        random_ts_ids = all_ts_ids[self.ts_id_name]
        random_indices = np.arange(len(all_ts_ids))

        # Process train_ts if it was specified with times series ids
        if self.train_ts is not None and not isinstance(self.train_ts, (float, int)):
            self.train_ts, self.train_ts_row_ranges, _ = self._process_ts_ids(self.train_ts, all_ts_ids, all_ts_row_ranges, None, None)
            self.has_train = True

            mask = np.isin(random_ts_ids, self.train_ts, invert=True)
            random_ts_ids = random_ts_ids[mask]
            random_indices = random_indices[mask]

            self.logger.debug("train_ts set: %s", self.train_ts)

        # Process val_ts if it was specified with times series ids
        if self.val_ts is not None and not isinstance(self.val_ts, (float, int)):
            self.val_ts, self.val_ts_row_ranges, _ = self._process_ts_ids(self.val_ts, all_ts_ids, all_ts_row_ranges, None, None)
            self.has_val = True

            mask = np.isin(random_ts_ids, self.val_ts, invert=True)
            random_ts_ids = random_ts_ids[mask]
            random_indices = random_indices[mask]

            self.logger.debug("val_ts set: %s", self.val_ts)

        # Process time_ts if it was specified with times series ids
        if self.test_ts is not None and not isinstance(self.test_ts, (float, int)):
            self.test_ts, self.test_ts_row_ranges, _ = self._process_ts_ids(self.test_ts, all_ts_ids, all_ts_row_ranges, None, None)
            self.has_test = True

            mask = np.isin(random_ts_ids, self.test_ts, invert=True)
            random_ts_ids = random_ts_ids[mask]
            random_indices = random_indices[mask]

            self.logger.debug("test_ts set: %s", self.test_ts)

        # Convert proportions to total values
        if isinstance(self.train_ts, float):
            self.train_ts = int(self.train_ts * len(random_ts_ids))
            self.logger.debug("train_ts converted to total values: %s", self.train_ts)
        if isinstance(self.val_ts, float):
            self.val_ts = int(self.val_ts * len(random_ts_ids))
            self.logger.debug("val_ts converted to total values: %s", self.val_ts)
        if isinstance(self.test_ts, float):
            self.test_ts = int(self.test_ts * len(random_ts_ids))
            self.logger.debug("test_ts converted to total values: %s", self.test_ts)

        # Process random train_ts if it is to be randomly made
        if isinstance(self.train_ts, int):
            self.train_ts, self.train_ts_row_ranges, random_indices = self._process_ts_ids(None, all_ts_ids, all_ts_row_ranges, self.train_ts, random_indices)
            self.has_train = True
            self.logger.debug("Random train_ts set with %s time series.", self.train_ts)

        # Process random val_ts if it is to be randomly made
        if isinstance(self.val_ts, int):
            self.val_ts, self.val_ts_row_ranges, random_indices = self._process_ts_ids(None, all_ts_ids, all_ts_row_ranges, self.val_ts, random_indices)
            self.has_val = True
            self.logger.debug("Random val_ts set with %s time series.", self.val_ts)

        # Process random test_ts if it is to be randomly made
        if isinstance(self.test_ts, int):
            self.test_ts, self.test_ts_row_ranges, random_indices = self._process_ts_ids(None, all_ts_ids, all_ts_row_ranges, self.test_ts, random_indices)
            self.has_test = True
            self.logger.debug("Random test_ts set with %s time series.", self.test_ts)

        if not self.has_train and not self.has_val and not self.has_test:
            self.all_ts = all_ts_ids[self.ts_id_name]
            self.all_ts, self.all_ts_row_ranges, _ = self._process_ts_ids(self.all_ts, all_ts_ids, all_ts_row_ranges, None, None)
            self.logger.info("Using all time series for all_ts because train_ts, val_ts, and test_ts are all set to None.")
        else:
            for temp_ts_ids in [self.train_ts, self.val_ts, self.test_ts]:
                if temp_ts_ids is None:
                    continue
                elif self.all_ts is None:
                    self.all_ts = temp_ts_ids.copy()
                else:
                    self.all_ts = np.concatenate((self.all_ts, temp_ts_ids))

            if self.has_train:
                self.logger.debug("all_ts includes ids from train_ts.")
            if self.has_val:
                self.logger.debug("all_ts includes ids from val_ts.")
            if self.has_test:
                self.logger.debug("all_ts includes ids from test_ts.")

            self.all_ts, self.all_ts_row_ranges, _ = self._process_ts_ids(self.all_ts, all_ts_ids, all_ts_row_ranges, None, None)

        self.has_all = self.all_ts is not None

        if self.has_all:
            self.logger.debug("all_ts set with %s time series.", self.all_ts)

    def _set_feature_scalers(self) -> None:
        """Creates and/or validates scalers based on the `scale_with` parameter. """

        if self.scale_with is None:
            self.scale_with_display = None
            self.are_scalers_premade = False
            self.scalers = None
            self.is_scaler_custom = None

            self.logger.debug("No scaler will be used because scale_with is not set.")
            return

        # Treat scale_with as already initialized scaler
        if not isinstance(self.scale_with, (type, ScalerType)):
            self.scalers = self.scale_with

            if not self.has_train:
                if self.partial_fit_initialized_scalers:
                    self.logger.warning("partial_fit_initialized_scalers will be ignored because train set is not used.")
                self.partial_fit_initialized_scalers = False

            self.scale_with, self.scale_with_display = scaler_from_input_to_scaler_type(type(self.scale_with), check_for_fit=False, check_for_partial_fit=self.partial_fit_initialized_scalers)

            self.are_scalers_premade = True

            self.is_scaler_custom = "Custom" in self.scale_with_display
            self.logger.debug("Using initialized scaler of type: %s", self.scale_with_display)

        # Treat scale_with as uninitialized scaler
        else:
            if not self.has_train:
                self.scale_with = None
                self.scale_with_display = None
                self.are_scalers_premade = False
                self.scalers = None
                self.is_scaler_custom = None

                self.logger.warning("No scaler will be used because train set is not used.")
                return

            self.scale_with, self.scale_with_display = scaler_from_input_to_scaler_type(self.scale_with, check_for_fit=False, check_for_partial_fit=True)
            self.scalers = self.scale_with()

            self.are_scalers_premade = False

            self.is_scaler_custom = "Custom" in self.scale_with_display
            self.logger.debug("Using uninitialized scaler of type: %s", self.scale_with_display)

    def _set_fillers(self) -> None:
        """Creates and/or validates fillers based on the `fill_missing_with` parameter. """

        self.fill_missing_with, self.fill_missing_with_display = filler_from_input_to_type(self.fill_missing_with)
        self.is_filler_custom = "Custom" in self.fill_missing_with_display if self.fill_missing_with is not None else None

        if self.fill_missing_with is None:
            self.logger.debug("No filler is used because fill_missing_with is set to None.")
            return

        # Set the fillers for the training set
        if self.has_train:
            self.train_fillers = np.array([self.fill_missing_with(self.features_to_take_without_ids) for _ in self.train_ts])
            self.logger.debug("Fillers for training set are set.")

        # Set the fillers for the validation set
        if self.has_val:
            self.val_fillers = np.array([self.fill_missing_with(self.features_to_take_without_ids) for _ in self.val_ts])
            self.logger.debug("Fillers for validation set are set.")

        # Set the fillers for the test set
        if self.has_test:
            self.test_fillers = np.array([self.fill_missing_with(self.features_to_take_without_ids) for _ in self.test_ts])
            self.logger.debug("Fillers for test set are set.")

        # Set the fillers for the all set
        if self.has_all:
            self.all_fillers = np.array([self.fill_missing_with(self.features_to_take_without_ids) for _ in self.all_ts])
            self.logger.debug("Fillers for all set are set.")

        self.logger.debug("Using filler: %s.", self.fill_missing_with_display)

    def _validate_finalization(self) -> None:
        """Performs final validation of the configuration. """

        train_size = 0
        if self.has_train:
            train_size += len(self.train_ts)

        val_size = 0
        if self.has_val:
            val_size += len(self.val_ts)

        test_size = 0
        if self.has_test:
            test_size += len(self.test_ts)

        # Check for overlap between train, val, and test sets
        if train_size + val_size + test_size > 0 and train_size + val_size + test_size != len(np.unique(self.all_ts)):
            self.logger.error("Overlap detected! Train, Val, and Test sets can't have the same IDs.")
            raise ValueError("Train, Val, and Test can't have the same IDs.")

    def __str__(self) -> str:

        if self.scale_with is None:
            scaler_part = f"Scaler type: {str(self.scale_with_display)}"
        else:
            scaler_part = f'''Scaler type: {str(self.scale_with_display)}
        Are scalers premade: {self.are_scalers_premade}
        Are premade scalers partial_fitted: {self.partial_fit_initialized_scalers}'''

        if self.include_time:
            time_part = f'''Time included: {str(self.include_time)}    
        Time format: {str(self.time_format)}'''
        else:
            time_part = f"Time included: {str(self.include_time)}"

        return f'''
Config Details:
    Used for database: {self.database_name}
    Aggregation: {str(self.aggregation)}
    Source: {str(self.source_type)}

    Time series
        Train time series IDS: {get_abbreviated_list_string(self.train_ts)}
        Val time series IDS: {get_abbreviated_list_string(self.val_ts)}
        Test time series IDS {get_abbreviated_list_string(self.test_ts)}
        All time series IDS {get_abbreviated_list_string(self.all_ts)}
    Time periods
        Time period: {str(self.display_time_period)}
    Features
        Taken features: {str(self.features_to_take_without_ids)}
        Default values: {self.default_values}
        Time series ID included: {str(self.include_ts_id)}
        {time_part}
    Fillers         
        Filler type: {str(self.fill_missing_with_display)}
    Scalers
        {scaler_part}
    Batch sizes
        Train batch size: {self.train_batch_size}
        Val batch size: {self.val_batch_size}
        Test batch size: {self.test_batch_size}
        All batch size: {self.all_batch_size}
    Default workers
        Train worker count: {str(self.train_workers)}
        Val worker count: {str(self.val_workers)}
        Test worker count: {str(self.test_workers)}
        All worker count: {str(self.all_workers)}
        Init worker count: {str(self.init_workers)}
    Other
        Nan threshold: {str(self.nan_threshold)}
        Random state: {self.random_state}
        Train dataloader order {str(self.train_dataloader_order)}
                '''