Series-based dataset class
cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset
dataclass
Bases: CesnetDataset
This class is used for series-based returning of data. Can be created by using get_dataset
with parameter is_series_based
= True
.
Series-based means batch size affects number of returned time series in one batch. Which times for each time series are returned does not change.
The dataset provides multiple ways to access the data:
- Iterable PyTorch DataLoader: For batch processing.
- Pandas DataFrame: For loading the entire training, validation, test or all set at once.
- Numpy array: For loading the entire training, validation, test or all set at once.
- See loading data for more details.
The dataset is stored in a PyTables database. The internal SeriesBasedDataset
and SeriesBasedInitializerDataset
classes (used only when calling set_dataset_config_and_initialize
) act as wrappers that implement the PyTorch Dataset
interface. These wrappers are compatible with PyTorch’s DataLoader
, providing efficient parallel data loading.
The dataset configuration is done through the SeriesBasedConfig
class.
Intended usage:
- Create an instance of the dataset with the desired data root by calling
get_dataset
. This will download the dataset if it has not been previously downloaded and return instance of dataset. - Create an instance of
SeriesBasedConfig
and set it usingset_dataset_config_and_initialize
. This initializes the dataset, including data splitting (train/validation/test), fitting scalers (if needed), selecting features, and more. This is cached for later use. - Use
get_train_dataloader
/get_train_df
/get_train_numpy
to get training data for chosen model. - Validate the model and perform the hyperparameter optimalization on
get_val_dataloader
/get_val_df
/get_val_numpy
. - Evaluate the model on
get_test_dataloader
/get_test_df
/get_test_numpy
.
Alternatively you can use load_benchmark
- Call
load_benchmark
with the desired benchmark. You can use your own saved benchmark or you can use already built-in one. This will download the dataset and annotations (if available) if they have not been previously downloaded. - Retrieve the initialized dataset using
get_initialized_dataset
. This will provide a dataset that is ready to use. - Use
get_train_dataloader
/get_train_df
/get_train_numpy
to get training data for chosen model. - Validate the model and perform the hyperparameter optimalization on
get_val_dataloader
/get_val_df
/get_val_numpy
. - Evaluate the model on
get_test_dataloader
/get_test_df
/get_test_numpy
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
database_name
|
str
|
Name of the database. |
required |
dataset_path
|
str
|
Path to the dataset file. |
required |
configs_root
|
str
|
Path to the folder where configurations are saved. |
required |
benchmarks_root
|
str
|
Path to the folder where benchmarks are saved. |
required |
annotations_root
|
str
|
Path to the folder where annotations are saved. |
required |
source_type
|
SourceType
|
The source type of the dataset. |
required |
aggregation
|
AgreggationType
|
The aggregation type for the selected source type. |
required |
ts_id_name
|
str
|
Name of the id used for time series. |
required |
default_values
|
dict
|
Default values for each available feature. |
required |
additional_data
|
dict[str, tuple]
|
Available small datasets. Can get them by calling |
required |
Attributes:
Name | Type | Description |
---|---|---|
time_indices |
Available time IDs for the dataset. |
|
ts_indices |
Available time series IDs for the dataset. |
|
annotations |
Annotations for the selected dataset. |
|
logger |
Logger for displaying information. |
|
imported_annotations_ts_identifier |
Identifier for the imported annotations of type |
|
imported_annotations_time_identifier |
Identifier for the imported annotations of type |
|
imported_annotations_both_identifier |
Identifier for the imported annotations of type |
The following attributes are initialized when set_dataset_config_and_initialize
is called.
Attributes:
Name | Type | Description |
---|---|---|
dataset_config |
Optional[SeriesBasedConfig]
|
Configuration of the dataset. |
train_dataset |
Optional[SeriesBasedDataset]
|
Training set as a |
val_dataset |
Optional[SeriesBasedDataset]
|
Validation set as a |
test_dataset |
Optional[SeriesBasedDataset]
|
Test set as a |
all_dataset |
Optional[SeriesBasedDataset]
|
All set as a |
train_dataloader |
Optional[DataLoader]
|
Iterable PyTorch |
val_dataloader |
Optional[DataLoader]
|
Iterable PyTorch |
test_dataloader |
Optional[DataLoader]
|
Iterable PyTorch |
all_dataloader |
Optional[DataLoader]
|
Iterable PyTorch |
Source code in cesnet_tszoo\datasets\series_based_cesnet_dataset.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
|
set_dataset_config_and_initialize
set_dataset_config_and_initialize(dataset_config: SeriesBasedConfig, display_config_details: bool = True, workers: int | Literal['config'] = 'config') -> None
Initialize training set, validation est, test set etc.. This method must be called before any data can be accessed. It is required for the final initialization of dataset_config
.
The following configuration attributes are used during initialization:
Dataset config | Description |
---|---|
init_workers |
Specifies the number of workers to use for initialization. Applied when workers = "config". |
partial_fit_initialized_scalers |
Determines whether initialized scalers should be partially fitted on the training data. |
nan_threshold |
Filters out time series with missing values exceeding the specified threshold. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_config
|
SeriesBasedConfig
|
Desired configuration of the dataset. |
required |
display_config_details
|
bool
|
Flag indicating whether to display the configuration values after initialization. |
True
|
workers
|
int | Literal['config']
|
The number of workers to use during initialization. |
'config'
|
Source code in cesnet_tszoo\datasets\series_based_cesnet_dataset.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
get_train_dataloader
get_train_dataloader(ts_id: int | None = None, workers: int | Literal['config'] = 'config', **kwargs) -> DataLoader
Returns a PyTorch DataLoader
for training set.
The DataLoader
is created on the first call and cached for subsequent use.
The cached dataloader is cleared when either get_train_df
or get_train_numpy
is called.
The structure of the returned batch depends on the time_format
and whether sliding_window_size
is used:
- When
sliding_window_size
is used:- With
time_format
== TimeFormat.DATETIME and included time:np.ndarray
of shape(num_time_series, times - 1, features)
np.ndarray
of shape(num_time_series, 1, features)
np.ndarray
of times with shape(times - 1)
np.ndarray
of time with shape(1)
- When
time_format
!= TimeFormat.DATETIME or time is not included:np.ndarray
of shape(num_time_series, times - 1, features)
np.ndarray
of shape(num_time_series, 1, features)
- With
- When
sliding_window_size
is not used:- With
time_format
== TimeFormat.DATETIME and included time:np.ndarray
of shape(num_time_series, times, features)
np.ndarray
of time with shape(times)
- When
time_format
!= TimeFormat.DATETIME or time is not included:np.ndarray
of shape(num_time_series, times, features)
- With
The DataLoader
is configured with the following config attributes:
Dataset config | Description |
---|---|
train_batch_size |
Number of samples per batch. Affected by whether the dataset is series-based or time-based. Refer to relevant config for details. |
sliding_window_size |
Available only for time-based datasets. Modifies the shape of the returned data. |
sliding_window_prediction_size |
Available only for time-based datasets. Modifies the shape of the returned data. |
sliding_window_step |
Available only for time-based datasets. Number of times to move by after each window. |
train_workers |
Specifies the number of workers to use for loading train data. Applied when workers = "config". |
train_dataloader_order |
Available only for series-based datasets. Whether to load train data in sequential or random order. See cesnet_tszoo.utils.enums.DataloaderOrder. |
random_state |
Seed for loading train data in random order. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
workers
|
int | Literal['config']
|
The number of workers to use for loading train data. |
'config'
|
ts_id
|
int | None
|
Specifies time series to take. If None returns all time series as normal. |
None
|
Returns:
Type | Description |
---|---|
DataLoader
|
An iterable |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
|
get_val_dataloader
get_val_dataloader(ts_id: int | None = None, workers: int | Literal['config'] = 'config', **kwargs) -> DataLoader
Returns a PyTorch DataLoader
for validation set.
The DataLoader
is created on the first call and cached for subsequent use.
The cached dataloader is cleared when either get_val_df
or get_val_numpy
is called.
The structure of the returned batch depends on the time_format
and whether sliding_window_size
is used:
- When
sliding_window_size
is used:- With
time_format
== TimeFormat.DATETIME and included time:np.ndarray
of shape(num_time_series, times - 1, features)
np.ndarray
of shape(num_time_series, 1, features)
np.ndarray
of times with shape(times - 1)
np.ndarray
of time with shape(1)
- When
time_format
!= TimeFormat.DATETIME or time is not included:np.ndarray
of shape(num_time_series, times - 1, features)
np.ndarray
of shape(num_time_series, 1, features)
- With
- When
sliding_window_size
is not used:- With
time_format
== TimeFormat.DATETIME and included time:np.ndarray
of shape(num_time_series, times, features)
np.ndarray
of time with shape(times)
- When
time_format
!= TimeFormat.DATETIME or time is not included:np.ndarray
of shape(num_time_series, times, features)
- With
The DataLoader
is configured with the following config attributes:
Dataset config | Description |
---|---|
val_batch_size |
Number of samples per batch. Affected by whether the dataset is series-based or time-based. Refer to relevant config for details. |
sliding_window_size |
Available only for time-based datasets. Modifies the shape of the returned data. |
sliding_window_prediction_size |
Available only for time-based datasets. Modifies the shape of the returned data. |
sliding_window_step |
Available only for time-based datasets. Number of times to move by after each window. |
val_workers |
Specifies the number of workers to use for loading validation data. Applied when workers = "config". |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
workers
|
int | Literal['config']
|
The number of workers to use for loading validation data. |
'config'
|
ts_id
|
int | None
|
Specifies time series to take. If None returns all time series as normal. |
None
|
Returns:
Type | Description |
---|---|
DataLoader
|
An iterable |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
|
get_test_dataloader
get_test_dataloader(ts_id: int | None = None, workers: int | Literal['config'] = 'config', **kwargs) -> DataLoader
Returns a PyTorch DataLoader
for test set.
The DataLoader
is created on the first call and cached for subsequent use.
The cached dataloader is cleared when either get_test_df
or get_test_numpy
is called.
The structure of the returned batch depends on the time_format
and whether sliding_window_size
is used:
- When
sliding_window_size
is used:- With
time_format
== TimeFormat.DATETIME and included time:np.ndarray
of shape(num_time_series, times - 1, features)
np.ndarray
of shape(num_time_series, 1, features)
np.ndarray
of times with shape(times - 1)
np.ndarray
of time with shape(1)
- When
time_format
!= TimeFormat.DATETIME or time is not included:np.ndarray
of shape(num_time_series, times - 1, features)
np.ndarray
of shape(num_time_series, 1, features)
- With
- When
sliding_window_size
is not used:- With
time_format
== TimeFormat.DATETIME and included time:np.ndarray
of shape(num_time_series, times, features)
np.ndarray
of time with shape(times)
- When
time_format
!= TimeFormat.DATETIME or time is not included:np.ndarray
of shape(num_time_series, times, features)
- With
The DataLoader
is configured with the following config attributes:
Dataset config | Description |
---|---|
test_batch_size |
Number of samples per batch. Affected by whether the dataset is series-based or time-based. Refer to relevant config for details. |
sliding_window_size |
Available only for time-based datasets. Modifies the shape of the returned data. |
sliding_window_prediction_size |
Available only for time-based datasets. Modifies the shape of the returned data. |
sliding_window_step |
Available only for time-based datasets. Number of times to move by after each window. |
test_workers |
Specifies the number of workers to use for loading test data. Applied when workers = "config". |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
workers
|
int | Literal['config']
|
The number of workers to use for loading test data. |
'config'
|
ts_id
|
int | None
|
Specifies time series to take. If None returns all time series as normal. |
None
|
Returns:
Type | Description |
---|---|
DataLoader
|
An iterable |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
|
get_all_dataloader
get_all_dataloader(ts_id: int | None = None, workers: int | Literal['config'] = 'config', **kwargs) -> DataLoader
Returns a PyTorch DataLoader
for all set.
The DataLoader
is created on the first call and cached for subsequent use.
The cached dataloader is cleared when either get_all_df
or get_all_numpy
is called.
The structure of the returned batch depends on the time_format
and whether sliding_window_size
is used:
- When
sliding_window_size
is used:- With
time_format
== TimeFormat.DATETIME and included time:np.ndarray
of shape(num_time_series, times - 1, features)
np.ndarray
of shape(num_time_series, 1, features)
np.ndarray
of times with shape(times - 1)
np.ndarray
of time with shape(1)
- When
time_format
!= TimeFormat.DATETIME or time is not included:np.ndarray
of shape(num_time_series, times - 1, features)
np.ndarray
of shape(num_time_series, 1, features)
- With
- When
sliding_window_size
is not used:- With
time_format
== TimeFormat.DATETIME and included time:np.ndarray
of shape(num_time_series, times, features)
np.ndarray
of time with shape(times)
- When
time_format
!= TimeFormat.DATETIME or time is not included:np.ndarray
of shape(num_time_series, times, features)
- With
The DataLoader
is configured with the following config attributes:
Dataset config | Description |
---|---|
all_batch_size |
Number of samples per batch. Affected by whether the dataset is series-based or time-based. Refer to relevant config for details. |
sliding_window_size |
Available only for time-based datasets. Modifies the shape of the returned data. |
sliding_window_prediction_size |
Available only for time-based datasets. Modifies the shape of the returned data. |
sliding_window_step |
Available only for time-based datasets. Number of times to move by after each window. |
all_workers |
Specifies the number of workers to use for loading all data. Applied when workers = "config". |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
workers
|
int | Literal['config']
|
The number of workers to use for loading all data. |
'config'
|
ts_id
|
int | None
|
Specifies time series to take. If None returns all time series as normal. |
None
|
Returns:
Type | Description |
---|---|
DataLoader
|
An iterable |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
|
get_train_df
get_train_df(workers: int | Literal['config'] = 'config', as_single_dataframe: bool = True) -> pd.DataFrame
Creates a Pandas DataFrame
containing all the data from training set grouped by time series.
This method uses the train_dataloader
with a batch size set to the total number of data in the training set. The cached train_dataloader
is cleared during this operation.
Memory usage
The entire training set is loaded into memory, which may lead to high memory usage. If working with large training set, consider using get_train_dataloader
instead to handle data in batches.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
workers
|
int | Literal['config']
|
The number of workers to use for loading train data. |
'config'
|
as_single_dataframe
|
bool
|
Whether to return a single dataframe with all time series combined, or to create separate dataframes for each time series. |
True
|
Returns:
Type | Description |
---|---|
DataFrame
|
A single Pandas DataFrame containing all data from training set, or a list of DataFrames (one per time series). |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
|
get_val_df
get_val_df(workers: int | Literal['config'] = 'config', as_single_dataframe: bool = True) -> pd.DataFrame
Create a Pandas DataFrame
containing all the data from validation set grouped by time series.
This method uses the val_dataloader
with a batch size set to the total number of data in the validation set. The cached val_dataloader
is cleared during this operation.
Memory usage
The entire validation set is loaded into memory, which may lead to high memory usage. If working with large validation set, consider using get_val_dataloader
instead to handle data in batches.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
workers
|
int | Literal['config']
|
The number of workers to use for loading validation data. |
'config'
|
as_single_dataframe
|
bool
|
Whether to return a single dataframe with all time series combined, or to create separate dataframes for each time series. |
True
|
Returns:
Type | Description |
---|---|
DataFrame
|
A single Pandas DataFrame containing all data from validation set, or a list of DataFrames (one per time series). |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
|
get_test_df
get_test_df(workers: int | Literal['config'] = 'config', as_single_dataframe: bool = True) -> pd.DataFrame
Creates a Pandas DataFrame
containing all the data from test set grouped by time series.
This method uses the test_dataloader
with a batch size set to the total number of data in the test set. The cached test_dataloader
is cleared during this operation.
Memory usage
The entire test set is loaded into memory, which may lead to high memory usage. If working with large test set, consider using get_test_dataloader
instead to handle data in batches.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
workers
|
int | Literal['config']
|
The number of workers to use for loading test data. |
'config'
|
as_single_dataframe
|
bool
|
Whether to return a single dataframe with all time series combined, or to create separate dataframes for each time series. |
True
|
Returns:
Type | Description |
---|---|
DataFrame
|
A single Pandas DataFrame containing all data from test set, or a list of DataFrames (one per time series). |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
|
get_all_df
get_all_df(workers: int | Literal['config'] = 'config', as_single_dataframe: bool = True) -> pd.DataFrame
Creates a Pandas DataFrame
containing all the data from all set grouped by time series.
This method uses the all_dataloader
with a batch size set to the total number of data in the all set. The cached all_dataloader
is cleared during this operation.
Memory usage
The entire all set is loaded into memory, which may lead to high memory usage. If working with large all set, consider using get_all_dataloader
instead to handle data in batches.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
workers
|
int | Literal['config']
|
The number of workers to use for loading all data. |
'config'
|
as_single_dataframe
|
bool
|
Whether to return a single dataframe with all time series combined, or to create separate dataframes for each time series. |
True
|
Returns:
Type | Description |
---|---|
DataFrame
|
A single Pandas DataFrame containing all data from all set, or a list of DataFrames (one per time series). |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 |
|
get_train_numpy
get_train_numpy(workers: int | Literal['config'] = 'config') -> np.ndarray
Creates a NumPy array containing all the data from training set grouped by time series, with the shape (num_time_series, num_times, num_features)
.
This method uses the train_dataloader
with a batch size set to the total number of data in the training set. The cached train_dataloader
is cleared during this operation.
Memory usage
The entire training set is loaded into memory, which may lead to high memory usage. If working with large training set, consider using get_train_dataloader
instead to handle data in batches.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
workers
|
int | Literal['config']
|
The number of workers to use for loading train data. |
'config'
|
Returns:
Type | Description |
---|---|
ndarray
|
A NumPy array containing all the data in training set with the shape |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 |
|
get_val_numpy
get_val_numpy(workers: int | Literal['config'] = 'config') -> np.ndarray
Creates a NumPy array containing all the data from validation set grouped by time series, with the shape (num_time_series, num_times, num_features)
.
This method uses the val_dataloader
with a batch size set to the total number of data in the validation set. The cached val_dataloader
is cleared during this operation.
Memory usage
The entire validation set is loaded into memory, which may lead to high memory usage. If working with large validation set, consider using get_val_dataloader
instead to handle data in batches.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
workers
|
int | Literal['config']
|
The number of workers to use for loading validation data. |
'config'
|
Returns:
Type | Description |
---|---|
ndarray
|
A NumPy array containing all the data in validation set with the shape |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
|
get_test_numpy
get_test_numpy(workers: int | Literal['config'] = 'config') -> np.ndarray
Creates a NumPy array containing all the data from test set grouped by time series, with the shape (num_time_series, num_times, num_features)
.
This method uses the test_dataloader
with a batch size set to the total number of data in the test set. The cached test_dataloader
is cleared during this operation.
Memory usage
The entire test set is loaded into memory, which may lead to high memory usage. If working with large test set, consider using get_test_dataloader
instead to handle data in batches.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
workers
|
int | Literal['config']
|
The number of workers to use for loading test data. |
'config'
|
Returns:
Type | Description |
---|---|
ndarray
|
A NumPy array containing all the data in test set with the shape |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 |
|
get_all_numpy
get_all_numpy(workers: int | Literal['config'] = 'config') -> np.ndarray
Creates a NumPy array containing all the data from all set grouped by time series, with the shape (num_time_series, num_times, num_features)
.
This method uses the all_dataloader
with a batch size set to the total number of data in the all set. The cached all_dataloader
is cleared during this operation.
Memory usage
The entire all set is loaded into memory, which may lead to high memory usage. If working with large all set, consider using get_all_dataloader
instead to handle data in batches.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
workers
|
int | Literal['config']
|
The number of workers to use for loading all data. |
'config'
|
Returns:
Type | Description |
---|---|
ndarray
|
A NumPy array containing all the data in all set with the shape |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 |
|
display_dataset_details
display_dataset_details() -> None
Display information about the contents of the dataset.
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 |
|
display_config
display_config() -> None
Displays the values of the initialized configuration.
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1220 1221 1222 1223 1224 1225 |
|
get_feature_names
get_feature_names() -> list[str]
Returns a list of all available feature names in the dataset.
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1227 1228 1229 1230 |
|
get_data_about_set
get_data_about_set(about: SplitType | Literal['train', 'val', 'test', 'all']) -> dict
Retrieves data related to the specified set.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
about
|
SplitType | Literal['train', 'val', 'test', 'all']
|
Specifies the set to retrieve data about. |
required |
Returned dictionary contains:
- ts_ids: Ids of time series in
about
set. - TimeFormat.ID_TIME: Times in
about
set, where time format isTimeFormat.ID_TIME
. - TimeFormat.DATETIME: Times in
about
set, where time format isTimeFormat.DATETIME
. - TimeFormat.UNIX_TIME: Times in
about
set, where time format isTimeFormat.UNIX_TIME
. - TimeFormat.SHIFTED_UNIX_TIME: Times in
about
set, where time format isTimeFormat.SHIFTED_UNIX_TIME
.
Returns:
Type | Description |
---|---|
dict
|
Returns dictionary with details about set. |
Source code in cesnet_tszoo\datasets\series_based_cesnet_dataset.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
get_available_ts_indices
get_available_ts_indices()
Returns the available time series indices in this dataset.
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1245 1246 1247 |
|
get_additional_data
get_additional_data(data_name: str) -> pd.DataFrame
Create a Pandas DataFrame
of additional data of data_name
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_name
|
str
|
Name of additional data to return. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
Dataframe of additional data of |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 |
|
plot
plot(ts_id: int, plot_type: Literal['scatter', 'line'], features: list[str] | str | Literal['config'] = 'config', feature_per_plot: bool = True, time_format: TimeFormat | Literal['config', 'id_time', 'datetime', 'unix_time', 'shifted_unix_time'] = 'config', use_scalers: bool = True, is_interactive: bool = True) -> None
Displays a graph for the selected ts_id
and its features
.
The plotting is done using the Plotly
library, which provides interactive graphs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ts_id
|
int
|
The ID of the time series to display. |
required |
plot_type
|
Literal['scatter', 'line']
|
The type of graph to plot. |
required |
features
|
list[str] | str | Literal['config']
|
The features to display in the plot. |
'config'
|
feature_per_plot
|
bool
|
Whether each feature should be displayed in a separate plot or combined into one. |
True
|
time_format
|
TimeFormat | Literal['config', 'id_time', 'datetime', 'unix_time', 'shifted_unix_time']
|
The time format to use for the x-axis. |
'config'
|
use_scalers
|
bool
|
Whether the data should be scaled. If |
True
|
is_interactive
|
bool
|
Whether the plot should be interactive (e.g., zoom, hover). |
True
|
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 |
|
add_annotation
add_annotation(annotation: str, annotation_group: str, ts_id: int | None, id_time: int | None, enforce_ids: bool = True) -> None
Adds an annotation to the specified annotation_group
.
- If the provided
annotation_group
does not exist, it will be created. - At least one of
ts_id
orid_time
must be provided to associate the annotation with time series or/and time point.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation
|
str
|
The annotation to be added. |
required |
annotation_group
|
str
|
The group to which the annotation should be added. |
required |
ts_id
|
int | None
|
The time series ID to which the annotation should be added. |
required |
id_time
|
int | None
|
The time ID to which the annotation should be added. |
required |
enforce_ids
|
bool
|
Flag indicating whether the |
True
|
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 |
|
remove_annotation
remove_annotation(annotation_group: str, ts_id: int | None, id_time: int | None) -> None
Removes an annotation from the specified annotation_group
.
- At least one of
ts_id
orid_time
must be provided to associate the annotation with time series or/and time point.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation_group
|
str
|
The annotation group from which the annotation should be removed. |
required |
ts_id
|
int | None
|
The time series ID from which the annotation should be removed. |
required |
id_time
|
int | None
|
The time ID from which the annotation should be removed. |
required |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 |
|
add_annotation_group
add_annotation_group(annotation_group: str, on: AnnotationType | Literal['id_time', 'ts_id', 'both'])
Adds a new annotation_group
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation_group
|
str
|
The name of the annotation group to be added. |
required |
on
|
AnnotationType | Literal['id_time', 'ts_id', 'both']
|
Specifies which part of the data should be annotated. If set to |
required |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 |
|
remove_annotation_group
remove_annotation_group(annotation_group: str, on: AnnotationType | Literal['id_time', 'ts_id', 'both'])
Removes the specified annotation_group
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation_group
|
str
|
The name of the annotation group to be removed. |
required |
on
|
AnnotationType | Literal['id_time', 'ts_id', 'both']
|
Specifies which part of the data the |
required |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 |
|
get_annotations
get_annotations(on: AnnotationType | Literal['id_time', 'ts_id', 'both']) -> pd.DataFrame
Returns the annotations as a Pandas DataFrame
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
on
|
AnnotationType | Literal['id_time', 'ts_id', 'both']
|
Specifies which annotations to return. If set to |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
A Pandas DataFrame containing the selected annotations. |
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 |
|
import_annotations
import_annotations(identifier: str, enforce_ids: bool = True) -> None
Imports annotations from a CSV file.
First, it attempts to load the built-in annotations, if no built-in annotations with such an identifier exists, it attempts to load a custom annotations from the "data_root"/tszoo/annotations/
directory.
data_root
is specified when the dataset is created.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
identifier
|
str
|
The name of the CSV file. |
required |
enforce_ids
|
bool
|
Flag indicating whether the |
True
|
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 |
|
import_config
import_config(identifier: str, display_config_details: bool = True, workers: int | Literal['config'] = 'config') -> None
Import the dataset_config from a pickle file and initializes the dataset. Config type must correspond to dataset type.
First, it attempts to load the built-in config, if no built-in config with such an identifier exists, it attempts to load a custom config from the "data_root"/tszoo/configs/
directory.
data_root
is specified when the dataset is created.
The following configuration attributes are used during initialization:
Dataset config | Description |
---|---|
init_workers |
Specifies the number of workers to use for initialization. Applied when workers = "config". |
partial_fit_initialized_scalers |
Determines whether initialized scalers should be partially fitted on the training data. |
nan_threshold |
Filters out time series with missing values exceeding the specified threshold. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
identifier
|
str
|
Name of the pickle file. |
required |
display_config_details
|
bool
|
Flag indicating whether to display the configuration values after initialization. |
True
|
workers
|
int | Literal['config']
|
The number of workers to use during initialization. |
'config'
|
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 |
|
save_annotations
save_annotations(identifier: str, on: AnnotationType | Literal['id_time', 'ts_id', 'both'], force_write: bool = False) -> None
Saves the annotations as a CSV file.
The file will be saved to a path determined by the data_root
specified when the dataset was created.
The annotations will be saved under the directory data_root/tszoo/annotations/
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
identifier
|
str
|
The name of the CSV file. |
required |
on
|
AnnotationType | Literal['id_time', 'ts_id', 'both']
|
What annotation type should be saved. If set to |
required |
force_write
|
bool
|
If set to |
False
|
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 |
|
save_config
save_config(identifier: str, create_with_details_file: bool = True, force_write: bool = False) -> None
Saves the config as a pickle file.
The file will be saved to a path determined by the data_root
specified when the dataset was created.
The config will be saved under the directory data_root/tszoo/configs/
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
identifier
|
str
|
The name of the pickle file. |
required |
create_with_details_file
|
bool
|
Whether to export the config along with a readable text file that provides details. |
True
|
force_write
|
bool
|
If set to |
False
|
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 |
|
save_benchmark
save_benchmark(identifier: str, force_write: bool = False) -> None
Saves the benchmark as a YAML file.
The benchmark, along with any associated annotations and config files, will be saved in a path determined by the data_root
specified when creating the dataset.
The default save path for benchmark is "data_root/tszoo/benchmarks/"
.
If you are using imported annotations
or config
(whether custom or built-in), their file names will be set in the benchmark
file.
If new annotations
or config
are created during the process, their filenames will be derived from the provided identifier
and set in the benchmark
file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
identifier
|
str
|
The name of the YAML file. |
required |
force_write
|
bool
|
If set to |
False
|
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 |
|
get_scalers
get_scalers() -> np.ndarray[Scaler] | Scaler | None
Return used scalers from config.
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1731 1732 1733 1734 1735 1736 |
|
check_errors
check_errors() -> None
Validates whether the dataset is corrupted.
Raises an exception if corrupted.
Source code in cesnet_tszoo\datasets\cesnet_dataset.py
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 |
|