Skip to content

Base dataset class

datasets.cesnet_dataset.CesnetDataset

The main class for accessing CESNET datasets. It handles downloading, train/validation/test splitting, and class selection. Access to data is provided through:

  • Iterable PyTorch DataLoader for batch processing. See using dataloaders for more details.
  • Pandas DataFrame for loading the entire train, validation, or test set at once.

The dataset is stored in a PyTables database. The internal PyTablesDataset class is used as a wrapper that implements the PyTorch Dataset interface and is compatible with DataLoader, which provides efficient parallel loading of the data. The dataset configuration is done through the DatasetConfig class.

Intended usage:

  1. Create an instance of the dataset class with the desired size and data root. This will download the dataset if it has not already been downloaded.
  2. Create an instance of DatasetConfig and set it with set_dataset_config_and_initialize. This will initialize the dataset — select classes, split data into train/validation/test sets, and fit data scalers if needed. All is done according to the provided configuration and is cached for later use.
  3. Use get_train_dataloader or get_train_df to get training data for a classification model.
  4. Validate the model and perform the hyperparameter optimalization on get_val_dataloader or get_val_df.
  5. Evaluate the model on get_test_dataloader or get_test_df.

Parameters:

Name Type Description Default
data_root str

Path to the folder where the dataset will be stored. Each dataset size has its own subfolder data_root/size

required
size str

Size of the dataset. Options are XS, S, M, L, ORIG.

'S'
silent bool

Whether to suppress print and tqdm output.

False

Attributes:

Name Type Description
name str

Name of the dataset.

database_filename str

Name of the database file.

database_path str

Path to the database file.

servicemap_path str

Path to the servicemap file.

statistics_path str

Path to the dataset statistics folder.

bucket_url str

URL of the bucket where the database is stored.

metadata DatasetMetadata

Additional dataset metadata.

available_classes list[str]

List of all available classes in the dataset.

available_dates list[str]

List of all available dates in the dataset.

time_periods dict[str, list[str]]

Predefined time periods. Each time period is a list of dates.

default_train_period_name str

Default time period for training.

default_test_period_name str

Default time period for testing.

The following attributes are initialized when set_dataset_config_and_initialize is called.

Attributes:

Name Type Description
dataset_config Optional[DatasetConfig]

Configuration of the dataset.

class_info Optional[ClassInfo]

Structured information about the classes.

dataset_indices Optional[IndicesTuple]

Named tuple containing train_indices, val_known_indices, val_unknown_indices, test_known_indices, test_unknown_indices. These are the indices into PyTables database that define train, validation, and test sets.

train_dataset Optional[PyTablesDataset]

Train set in the form of PyTablesDataset instance wrapping the PyTables database.

val_dataset Optional[PyTablesDataset]

Validation set in the form of PyTablesDataset instance wrapping the PyTables database.

test_dataset Optional[PyTablesDataset]

Test set in the form of PyTablesDataset instance wrapping the PyTables database.

known_app_counts Optional[DataFrame]

Known application counts in the train, validation, and test sets.

unknown_app_counts Optional[DataFrame]

Unknown application counts in the validation and test sets.

train_dataloader Optional[DataLoader]

Iterable PyTorch DataLoader for training.

train_dataloader_sampler Optional[Sampler]

Sampler used for iterating the training dataloader. Either RandomSampler or SequentialSampler.

train_dataloader_drop_last bool

Whether to drop the last incomplete batch when iterating the training dataloader.

val_dataloader Optional[DataLoader]

Iterable PyTorch DataLoader for validation.

test_dataloader Optional[DataLoader]

Iterable PyTorch DataLoader for testing.

Source code in cesnet_datazoo\datasets\cesnet_dataset.py
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
class CesnetDataset():
    """
    The main class for accessing CESNET datasets. It handles downloading, train/validation/test splitting, and class selection. Access to data is provided through:

    - Iterable PyTorch DataLoader for batch processing. See [using dataloaders][using-dataloaders] for more details.
    - Pandas DataFrame for loading the entire train, validation, or test set at once.

    The dataset is stored in a [PyTables](https://www.pytables.org/) database. The internal `PyTablesDataset` class is used as a wrapper
    that implements the PyTorch [`Dataset`](https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset) interface
    and is compatible with [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader),
    which provides efficient parallel loading of the data. The dataset configuration is done through the [`DatasetConfig`][config.DatasetConfig] class.

    **Intended usage:**

    1. Create an instance of the [dataset class][dataset-classes] with the desired size and data root. This will download the dataset if it has not already been downloaded.
    2. Create an instance of [`DatasetConfig`][config.DatasetConfig] and set it with [`set_dataset_config_and_initialize`][datasets.cesnet_dataset.CesnetDataset.set_dataset_config_and_initialize].
    This will initialize the dataset — select classes, split data into train/validation/test sets, and fit data scalers if needed. All is done according to the provided configuration and is cached for later use.
    3. Use [`get_train_dataloader`][datasets.cesnet_dataset.CesnetDataset.get_train_dataloader] or [`get_train_df`][datasets.cesnet_dataset.CesnetDataset.get_train_df] to get training data for a classification model.
    4. Validate the model and perform the hyperparameter optimalization on [`get_val_dataloader`][datasets.cesnet_dataset.CesnetDataset.get_val_dataloader] or [`get_val_df`][datasets.cesnet_dataset.CesnetDataset.get_val_df].
    5. Evaluate the model on [`get_test_dataloader`][datasets.cesnet_dataset.CesnetDataset.get_test_dataloader] or [`get_test_df`][datasets.cesnet_dataset.CesnetDataset.get_test_df].

    Parameters:
        data_root: Path to the folder where the dataset will be stored. Each dataset size has its own subfolder `data_root/size`
        size: Size of the dataset. Options are `XS`, `S`, `M`, `L`, `ORIG`.
        silent: Whether to suppress print and tqdm output.

    Attributes:
        name: Name of the dataset.
        database_filename: Name of the database file.
        database_path: Path to the database file.
        servicemap_path: Path to the servicemap file.
        statistics_path: Path to the dataset statistics folder.
        bucket_url: URL of the bucket where the database is stored.
        metadata: Additional [dataset metadata][metadata].
        available_classes: List of all available classes in the dataset.
        available_dates: List of all available dates in the dataset.
        time_periods: Predefined time periods. Each time period is a list of dates.
        default_train_period_name: Default time period for training.
        default_test_period_name: Default time period for testing.

    The following attributes are initialized when [`set_dataset_config_and_initialize`][datasets.cesnet_dataset.CesnetDataset.set_dataset_config_and_initialize] is called.

    Attributes:
        dataset_config: Configuration of the dataset.
        class_info: Structured information about the classes.
        dataset_indices: Named tuple containing `train_indices`, `val_known_indices`, `val_unknown_indices`, `test_known_indices`, `test_unknown_indices`. These are the indices into PyTables database that define train, validation, and test sets.
        train_dataset: Train set in the form of `PyTablesDataset` instance wrapping the PyTables database.
        val_dataset: Validation set in the form of `PyTablesDataset` instance wrapping the PyTables database.
        test_dataset: Test set in the form of `PyTablesDataset` instance wrapping the PyTables database.
        known_app_counts: Known application counts in the train, validation, and test sets.
        unknown_app_counts: Unknown application counts in the validation and test sets.
        train_dataloader: Iterable PyTorch [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) for training.
        train_dataloader_sampler: Sampler used for iterating the training dataloader. Either [`RandomSampler`](https://pytorch.org/docs/stable/data.html#torch.utils.data.RandomSampler) or [`SequentialSampler`](https://pytorch.org/docs/stable/data.html#torch.utils.data.SequentialSampler).
        train_dataloader_drop_last: Whether to drop the last incomplete batch when iterating the training dataloader.
        val_dataloader: Iterable PyTorch [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) for validation.
        test_dataloader: Iterable PyTorch [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) for testing.
    """
    data_root: str
    size: str
    silent: bool = False

    name: str
    database_filename: str
    database_path: str
    servicemap_path: str
    statistics_path: str
    bucket_url: str
    metadata: DatasetMetadata
    available_classes: list[str]
    available_dates: list[str]
    time_periods: dict[str, list[str]]
    default_train_period_name: str
    default_test_period_name: str

    dataset_config: Optional[DatasetConfig] = None
    class_info: Optional[ClassInfo] = None
    dataset_indices: Optional[IndicesTuple] = None
    train_dataset: Optional[PyTablesDataset] = None
    val_dataset: Optional[PyTablesDataset] = None
    test_dataset: Optional[PyTablesDataset] = None
    known_app_counts: Optional[pd.DataFrame] = None
    unknown_app_counts: Optional[pd.DataFrame] = None
    train_dataloader: Optional[DataLoader] = None
    train_dataloader_sampler: Optional[Sampler] = None
    train_dataloader_drop_last: bool = True
    val_dataloader: Optional[DataLoader] = None
    test_dataloader: Optional[DataLoader] = None

    _collate_fn: Optional[Callable] = None
    _tables_app_enum: dict[int, str]
    _tables_cat_enum: dict[int, str]

    def __init__(self, data_root: str, size: str = "S", database_checks_at_init: bool = False, silent: bool = False) -> None:
        self.silent = silent
        self.metadata = load_metadata(self.name)
        self.size = size
        if self.size != "ORIG":
            if size not in self.metadata.available_dataset_sizes:
                raise ValueError(f"Unknown dataset size {self.size}")
            self.name = f"{self.name}-{self.size}"
            filename, ext = os.path.splitext(self.database_filename)
            self.database_filename = f"{filename}-{self.size}{ext}"
        self.data_root = os.path.normpath(os.path.expanduser(os.path.join(data_root, self.size)))
        self.database_path = os.path.join(self.data_root, self.database_filename)
        self.servicemap_path = os.path.join(self.data_root, SERVICEMAP_FILE)
        self.statistics_path = os.path.join(self.data_root, "statistics")
        if not os.path.exists(self.data_root):
            os.makedirs(self.data_root)
        if not self._is_downloaded():
            self._download()
        if database_checks_at_init:
            with tb.open_file(self.database_path, mode="r") as database:
                tables_paths = list(map(lambda x: x._v_pathname, iter(database.get_node(f"/flows"))))
                num_samples = 0
                for p in tables_paths:
                    table = database.get_node(p)
                    assert isinstance(table, tb.Table)
                    if self._tables_app_enum != {v: k for k, v in dict(table.get_enum(APP_COLUMN)).items()}:
                        raise ValueError(f"Found mismatch between _tables_app_enum and the PyTables database enum in table {p}. Please report this issue.")
                    if self._tables_cat_enum != {v: k for k, v in dict(table.get_enum(CATEGORY_COLUMN)).items()}:
                        raise ValueError(f"Found mismatch between _tables_cat_enum and the PyTables database enum in table {p}. Please report this issue.")
                    num_samples += len(table)
                if self.size == "ORIG" and num_samples != self.metadata.available_samples:
                    raise ValueError(f"Expected {self.metadata.available_samples} samples, but got {num_samples} in the database. Please delete the data root folder, update cesnet-datazoo, and redownload the dataset.")
                if self.size != "ORIG" and num_samples != DATASET_SIZES[self.size]:
                    raise ValueError(f"Expected {DATASET_SIZES[self.size]} samples, but got {num_samples} in the database. Please delete the data root folder, update cesnet-datazoo, and redownload the dataset.")
                if self.available_dates != list(map(lambda x: x.removeprefix("/flows/D"), tables_paths)):
                    raise ValueError(f"Found mismatch between available_dates and the dates available in the PyTables database. Please report this issue.")
        # Add all available dates as single date time periods
        for d in self.available_dates:
            self.time_periods[d] = [d]
        available_applications = sorted([app for app in pd.read_csv(self.servicemap_path, index_col="Tag").index if not is_background_app(app)])
        if len(available_applications) != self.metadata.application_count:
            raise ValueError(f"Found {len(available_applications)} applications in the servicemap (omitting background traffic classes), but expected {self.metadata.application_count}. Please report this issue.")
        self.available_classes = available_applications + self.metadata.background_traffic_classes

    def set_dataset_config_and_initialize(self, dataset_config: DatasetConfig, disable_indices_cache: bool = False) -> None:
        """
        Initialize train, validation, and test sets. Data cannot be accessed before calling this method.

        Parameters:
            dataset_config: Desired configuration of the dataset.
            disable_indices_cache: Whether to disable caching of the dataset indices. This is useful when the dataset is used in many different configurations and you want to save disk space.
        """
        self.dataset_config = dataset_config
        self._clear()
        self._initialize_train_val_test(disable_indices_cache=disable_indices_cache)

    def get_train_dataloader(self) -> DataLoader:
        """
        Provides a PyTorch [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) for training. The dataloader is created on the first call and then cached.
        When the dataloader is iterated in random order, the last incomplete batch is dropped.
        The dataloader is configured with the following config attributes:

        | Dataset config               | Description                                                                                |
        | ---------------------------- | ------------------------------------------------------------------------------------------ |
        | `batch_size`                 | Number of samples per batch.                                                               |
        | `train_workers`              | Number of workers for loading train data.                                                  |
        | `train_dataloader_order`     | Whether to load train data in sequential or random order. See [config.DataLoaderOrder][].  |
        | `train_dataloader_seed`      | Seed for loading train data in random order.                                               |

        Returns:
            Train data as an iterable dataloader. See [using dataloaders][using-dataloaders] for more details.
        """
        if self.dataset_config is None:
            raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting train dataloader")
        if not self.dataset_config.need_train_set:
            raise ValueError("Train dataloader is not available when need_train_set is false")
        assert self.train_dataset
        if self.train_dataloader:
            return self.train_dataloader
        # Create sampler according to the selected order
        if self.dataset_config.train_dataloader_order == DataLoaderOrder.RANDOM:
            if self.dataset_config.train_dataloader_seed is not None:
                generator = torch.Generator()
                generator.manual_seed(self.dataset_config.train_dataloader_seed)
            else:
                generator = None
            self.train_dataloader_sampler = RandomSampler(self.train_dataset, generator=generator)
            self.train_dataloader_drop_last = True
        elif self.dataset_config.train_dataloader_order == DataLoaderOrder.SEQUENTIAL:
            self.train_dataloader_sampler = SequentialSampler(self.train_dataset)
            self.train_dataloader_drop_last = False
        else: assert_never(self.dataset_config.train_dataloader_order)
        # Create dataloader
        batch_sampler = BatchSampler(sampler=self.train_dataloader_sampler, batch_size=self.dataset_config.batch_size, drop_last=self.train_dataloader_drop_last)
        train_dataloader = DataLoader(
            self.train_dataset,
            num_workers=self.dataset_config.train_workers,
            worker_init_fn=worker_init_fn,
            collate_fn=self._collate_fn,
            persistent_workers=self.dataset_config.train_workers > 0,
            batch_size=None,
            sampler=batch_sampler,)
        if self.dataset_config.train_workers == 0:
            self.train_dataset.pytables_worker_init()
        self.train_dataloader = train_dataloader
        return train_dataloader

    def get_val_dataloader(self) -> DataLoader:
        """
        Provides a PyTorch [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) for validation.
        The dataloader is created on the first call and then cached.
        The dataloader is configured with the following config attributes:

        | Dataset config    | Description                                                       |
        | ------------------| ------------------------------------------------------------------|
        | `test_batch_size` | Number of samples per batch for loading validation and test data. |
        | `val_workers`     | Number of workers for loading validation data.                    |

        Returns:
            Validation data as an iterable dataloader. See [using dataloaders][using-dataloaders] for more details.
        """
        if self.dataset_config is None:
            raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting validaion dataloader")
        if not self.dataset_config.need_val_set:
            raise ValueError("Validation dataloader is not available when need_val_set is false")
        assert self.val_dataset is not None
        if self.val_dataloader:
            return self.val_dataloader
        batch_sampler = BatchSampler(sampler=SequentialSampler(self.val_dataset), batch_size=self.dataset_config.test_batch_size, drop_last=False)
        val_dataloader = DataLoader(
            self.val_dataset,
            num_workers=self.dataset_config.val_workers,
            worker_init_fn=worker_init_fn,
            collate_fn=self._collate_fn,
            persistent_workers=self.dataset_config.val_workers > 0,
            batch_size=None,
            sampler=batch_sampler,)
        if self.dataset_config.val_workers == 0:
            self.val_dataset.pytables_worker_init()
        self.val_dataloader = val_dataloader
        return val_dataloader

    def get_test_dataloader(self) -> DataLoader:
        """
        Provides a PyTorch [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) for testing.
        The dataloader is created on the first call and then cached.

        When the dataset is used in the open-world setting, and unknown classes are defined,
        the test dataloader returns `test_known_size` samples of known classes followed by `test_unknown_size` samples of unknown classes.

        The dataloader is configured with the following config attributes:

        | Dataset config    | Description                                                       |
        | ------------------| ------------------------------------------------------------------|
        | `test_batch_size` | Number of samples per batch for loading validation and test data. |
        | `test_workers`    | Number of workers for loading test data.                          |

        Returns:
            Test data as an iterable dataloader. See [using dataloaders][using-dataloaders] for more details.
        """
        if self.dataset_config is None:
            raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting test dataloader")
        if not self.dataset_config.need_test_set:
            raise ValueError("Test dataloader is not available when need_test_set is false")
        assert self.test_dataset is not None
        if self.test_dataloader:
            return self.test_dataloader
        batch_sampler = BatchSampler(sampler=SequentialSampler(self.test_dataset), batch_size=self.dataset_config.test_batch_size, drop_last=False)
        test_dataloader = DataLoader(
            self.test_dataset,
            num_workers=self.dataset_config.test_workers,
            worker_init_fn=worker_init_fn,
            collate_fn=self._collate_fn,
            persistent_workers=False,
            batch_size=None,
            sampler=batch_sampler,)
        if self.dataset_config.test_workers == 0:
            self.test_dataset.pytables_worker_init()
        self.test_dataloader = test_dataloader
        return test_dataloader

    def get_dataloaders(self) -> tuple[DataLoader, DataLoader, DataLoader]:
        """Gets train, validation, and test dataloaders in one call."""
        if self.dataset_config is None:
            raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting dataloaders")
        train_dataloader = self.get_train_dataloader()
        val_dataloader = self.get_val_dataloader()
        test_dataloader = self.get_test_dataloader()
        return train_dataloader, val_dataloader, test_dataloader

    def get_train_df(self, flatten_ppi: bool = False) -> pd.DataFrame:
        """
        Creates a train Pandas [`DataFrame`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html). The dataframe is in sequential (datetime) order. Consider shuffling the dataframe if needed.

        !!! warning "Memory usage"

            The whole train set is loaded into memory. If the dataset size is larger than `'S'`, consider using `get_train_dataloader` instead.

        Parameters:
            flatten_ppi: Whether to flatten the PPI sequence into individual columns (named `IPT_X`, `DIR_X`, `SIZE_X`, `PUSH_X`, *X* being the index of the packet) or keep one `PPI` column with 2D data.

        Returns:
            Train data as a dataframe.
        """
        self._check_before_dataframe(check_train=True)
        assert self.dataset_config is not None and self.train_dataset is not None
        if len(self.train_dataset) > DATAFRAME_SAMPLES_WARNING_THRESHOLD:
            warnings.warn(f"Train set has ({len(self.train_dataset)} samples), consider using get_train_dataloader() instead")
        train_dataloader = self.get_train_dataloader()
        assert isinstance(train_dataloader.sampler, BatchSampler) and self.train_dataloader_sampler is not None
        # Read dataloader in sequential order
        train_dataloader.sampler.sampler = SequentialSampler(self.train_dataset)
        train_dataloader.sampler.drop_last = False
        feature_names = self.dataset_config.get_feature_names(flatten_ppi=flatten_ppi)
        df = create_df_from_dataloader(dataloader=train_dataloader,
                                       feature_names=feature_names,
                                       flatten_ppi=flatten_ppi,
                                       silent=self.silent)
        # Restore the original dataloader sampler and drop_last
        train_dataloader.sampler.sampler = self.train_dataloader_sampler
        train_dataloader.sampler.drop_last = self.train_dataloader_drop_last
        return df

    def get_val_df(self, flatten_ppi: bool = False) -> pd.DataFrame:
        """
        Creates validation Pandas [`DataFrame`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html). The dataframe is in sequential (datetime) order.

        !!! warning "Memory usage"

            The whole validation set is loaded into memory. If the dataset size is larger than `'S'`, consider using `get_val_dataloader` instead.

        Parameters:
            flatten_ppi: Whether to flatten the PPI sequence into individual columns (named `IPT_X`, `DIR_X`, `SIZE_X`, `PUSH_X`, *X* being the index of the packet) or keep one `PPI` column with 2D data.

        Returns:
            Validation data as a dataframe.
        """
        self._check_before_dataframe(check_val=True)
        assert self.dataset_config is not None and self.val_dataset is not None
        if len(self.val_dataset) > DATAFRAME_SAMPLES_WARNING_THRESHOLD:
            warnings.warn(f"Validation set has ({len(self.val_dataset)} samples), consider using get_val_dataloader() instead")
        feature_names = self.dataset_config.get_feature_names(flatten_ppi=flatten_ppi)
        return create_df_from_dataloader(dataloader=self.get_val_dataloader(),
                                         feature_names=feature_names,
                                         flatten_ppi=flatten_ppi,
                                         silent=self.silent)

    def get_test_df(self, flatten_ppi: bool = False) -> pd.DataFrame:
        """
        Creates test Pandas [`DataFrame`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html). The dataframe is in sequential (datetime) order.


        When the dataset is used in the open-world setting, and unknown classes are defined,
        the returned test dataframe is composed of `test_known_size` samples of known classes followed by `test_unknown_size` samples of unknown classes.


        !!! warning "Memory usage"

            The whole test set is loaded into memory. If the dataset size is larger than `'S'`, consider using `get_test_dataloader` instead.

        Parameters:
            flatten_ppi: Whether to flatten the PPI sequence into individual columns (named `IPT_X`, `DIR_X`, `SIZE_X`, `PUSH_X`, *X* being the index of the packet) or keep one `PPI` column with 2D data.

        Returns:
            Test data as a dataframe.
        """
        self._check_before_dataframe(check_test=True)
        assert self.dataset_config is not None and self.test_dataset is not None
        if len(self.test_dataset) > DATAFRAME_SAMPLES_WARNING_THRESHOLD:
            warnings.warn(f"Test set has ({len(self.test_dataset)} samples), consider using get_test_dataloader() instead")
        feature_names = self.dataset_config.get_feature_names(flatten_ppi=flatten_ppi)
        return create_df_from_dataloader(dataloader=self.get_test_dataloader(),
                                         feature_names=feature_names,
                                         flatten_ppi=flatten_ppi,
                                         silent=self.silent)

    def get_num_classes(self) -> int:
        """Returns the number of classes in the current configuration of the dataset."""
        if self.class_info is None:
            raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting the number of classes")
        return self.class_info.num_classes

    def get_known_apps(self) -> list[str]:
        """Returns the list of known applications in the current configuration of the dataset."""
        if self.class_info is None:
            raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting known apps")
        return self.class_info.known_apps

    def get_unknown_apps(self) -> list[str]:
        """Returns the list of unknown applications in the current configuration of the dataset."""
        if self.class_info is None:
            raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting unknown apps")
        return self.class_info.unknown_apps

    def compute_dataset_statistics(self, num_samples: int | Literal["all"] = 10_000_000, num_workers: int = 4, batch_size: int = 16384, disabled_apps: Optional[list[str]] = None) -> None:
        """
        Computes dataset statistics and saves them to the `statistics_path` folder.

        Parameters:
            num_samples: Number of samples to use for computing the statistics.
            num_workers: Number of workers for loading data.
            batch_size: Number of samples per batch for loading data.
            disabled_apps: List of applications to exclude from the statistics.
        """
        if disabled_apps:
            bad_disabled_apps = [a for a in disabled_apps if a not in self.available_classes]
            if len(bad_disabled_apps) > 0:
                raise ValueError(f"Bad applications in disabled_apps {bad_disabled_apps}. Use applications available in dataset.available_classes")
        if not os.path.exists(self.statistics_path):
            os.mkdir(self.statistics_path)
        compute_dataset_statistics(database_path=self.database_path,
                                   tables_app_enum=self._tables_app_enum,
                                   tables_cat_enum=self._tables_cat_enum,
                                   output_dir=self.statistics_path,
                                   packet_histograms=self.metadata.packet_histograms,
                                   flowstats_features_boolean=self.metadata.flowstats_features_boolean,
                                   protocol=self.metadata.protocol,
                                   extra_fields=not self.name.startswith("CESNET-TLS22"),
                                   disabled_apps=disabled_apps if disabled_apps is not None else [],
                                   num_samples=num_samples,
                                   num_workers=num_workers,
                                   batch_size=batch_size,
                                   silent=self.silent)

    def _generate_time_periods(self) -> None:
        time_periods = {}
        for period in self.time_periods:
            time_periods[period] = []
            if period.startswith("W"):
                split = period.split("-")
                collection_year, week = int(split[1]), int(split[2])
                for d in range(1, 8):
                    s = datetime.date.fromisocalendar(collection_year, week, d).strftime("%Y%m%d")
                    # last week of a year can span into the following year
                    if s not in self.metadata.missing_dates_in_collection_period and s.startswith(str(collection_year)):
                        time_periods[period].append(s)
            elif period.startswith("M"):
                split = period.split("-")
                collection_year, month = int(split[1]), int(split[2])
                for d in range(1, calendar.monthrange(collection_year, month)[1]):
                    s = datetime.date(collection_year, month, d).strftime("%Y%m%d")
                    if s not in self.metadata.missing_dates_in_collection_period:
                        time_periods[period].append(s)
        self.time_periods = time_periods

    def _is_downloaded(self) -> bool:
        """Servicemap is downloaded after the database; thus if it exists, the database is also downloaded"""
        return os.path.exists(self.servicemap_path) and os.path.exists(self.database_path)

    def _download(self) -> None:
        if not self.silent:
            print(f"Downloading {self.name} dataset")
        database_url = f"{self.bucket_url}&file={self.database_filename}"
        servicemap_url = f"{self.bucket_url}&file={SERVICEMAP_FILE}"
        resumable_download(url=database_url, file_path=self.database_path, silent=self.silent)
        simple_download(url=servicemap_url, file_path=self.servicemap_path)

    def _clear(self) -> None:
        self.class_info = None
        self.dataset_indices = None
        self.train_dataset = None
        self.val_dataset = None
        self.test_dataset = None
        self.known_app_counts = None
        self.unknown_app_counts = None
        self.train_dataloader = None
        self.train_dataloader_sampler = None
        self.train_dataloader_drop_last = True
        self.val_dataloader = None
        self.test_dataloader = None
        self._collate_fn = None

    def _check_before_dataframe(self, check_train: bool = False, check_val: bool = False, check_test: bool = False) -> None:
        if self.dataset_config is None:
            raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting a dataframe")
        if self.dataset_config.return_tensors:
            raise ValueError("Dataframes are not available when return_tensors is set. Use a dataloader instead.")
        if check_train and not self.dataset_config.need_train_set:
            raise ValueError("Train dataframe is not available when need_train_set is false")
        if check_val and not self.dataset_config.need_val_set:
            raise ValueError("Validation dataframe is not available when need_val_set is false")
        if check_test and not self.dataset_config.need_test_set:
            raise ValueError("Test dataframe is not available when need_test_set is false")

    def _initialize_train_val_test(self, disable_indices_cache: bool = False) -> None:
        assert self.dataset_config is not None
        dataset_config = self.dataset_config
        servicemap = pd.read_csv(dataset_config.servicemap_path, index_col="Tag")
        # Initialize train set
        if dataset_config.need_train_set:
            train_indices, train_unknown_indices, known_apps, unknown_apps = init_or_load_train_indices(dataset_config=dataset_config,
                                                                                                        tables_app_enum=self._tables_app_enum,
                                                                                                        servicemap=servicemap,
                                                                                                        disable_indices_cache=disable_indices_cache,)
            # Date weight sampling of train indices
            if dataset_config.train_dates_weigths is not None:
                assert dataset_config.train_size != "all"
                if dataset_config.val_approach == ValidationApproach.SPLIT_FROM_TRAIN:
                    # requested number of samples is train_size + val_known_size when using the split-from-train validation approach
                    assert dataset_config.val_known_size != "all"
                    num_samples = dataset_config.train_size + dataset_config.val_known_size
                else:
                    num_samples = dataset_config.train_size
                if num_samples > len(train_indices):
                    raise ValueError(f"Requested number of samples for weight sampling ({num_samples}) is larger than the number of available train samples ({len(train_indices)})")
                train_indices = date_weight_sample_train_indices(dataset_config=dataset_config, train_indices=train_indices, num_samples=num_samples)
        elif dataset_config.apps_selection == AppSelection.FIXED:
            known_apps = sorted(dataset_config.apps_selection_fixed_known)
            unknown_apps = sorted(dataset_config.apps_selection_fixed_unknown)
            train_indices = no_indices()
            train_unknown_indices = no_indices()
        else:
            raise ValueError("Either need train set or the fixed application selection")
        # Initialize validation set
        if dataset_config.need_val_set:
            if dataset_config.val_approach == ValidationApproach.VALIDATION_DATES:
                val_known_indices, val_unknown_indices, val_data_path = init_or_load_val_indices(dataset_config=dataset_config,
                                                                                                 known_apps=known_apps,
                                                                                                 unknown_apps=unknown_apps,
                                                                                                 tables_app_enum=self._tables_app_enum,
                                                                                                 disable_indices_cache=disable_indices_cache,)
            elif dataset_config.val_approach == ValidationApproach.SPLIT_FROM_TRAIN:
                train_val_rng = get_fresh_random_generator(dataset_config=dataset_config, section=RandomizedSection.TRAIN_VAL_SPLIT)
                val_data_path = dataset_config._get_train_data_path()
                val_unknown_indices = train_unknown_indices
                train_labels = train_indices[INDICES_APP_FIELD]
                if dataset_config.train_dates_weigths is not None:
                    assert dataset_config.val_known_size != "all"
                    # When weight sampling is used, val_known_size is kept but the resulting train size can be smaller due to no enough samples in some train dates
                    if dataset_config.val_known_size > len(train_indices):
                        raise ValueError(f"Requested validation size ({dataset_config.val_known_size}) is larger than the number of available train samples after weight sampling ({len(train_indices)})")
                    train_indices, val_known_indices = train_test_split(train_indices, test_size=dataset_config.val_known_size, stratify=train_labels, shuffle=True, random_state=train_val_rng)
                    dataset_config.train_size = len(train_indices)
                elif dataset_config.train_size == "all" and dataset_config.val_known_size == "all":
                    train_indices, val_known_indices = train_test_split(train_indices, test_size=dataset_config.train_val_split_fraction, stratify=train_labels, shuffle=True, random_state=train_val_rng)
                else:
                    if dataset_config.val_known_size != "all" and  dataset_config.train_size != "all" and dataset_config.train_size + dataset_config.val_known_size > len(train_indices):
                        raise ValueError(f"Requested train size + validation size ({dataset_config.train_size + dataset_config.val_known_size}) is larger than the number of available train samples ({len(train_indices)})")
                    if dataset_config.train_size != "all" and dataset_config.train_size > len(train_indices):
                        raise ValueError(f"Requested train size ({dataset_config.train_size}) is larger than the number of available train samples ({len(train_indices)})")
                    if dataset_config.val_known_size != "all" and dataset_config.val_known_size > len(train_indices):
                        raise ValueError(f"Requested validation size ({dataset_config.val_known_size}) is larger than the number of available train samples ({len(train_indices)})")
                    train_indices, val_known_indices = train_test_split(train_indices,
                                                                        train_size=dataset_config.train_size if dataset_config.train_size != "all" else None,
                                                                        test_size=dataset_config.val_known_size if dataset_config.val_known_size != "all" else None,
                                                                        stratify=train_labels, shuffle=True, random_state=train_val_rng)
        else:
            val_known_indices = no_indices()
            val_unknown_indices = no_indices()
            val_data_path = None
        # Initialize test set
        if dataset_config.need_test_set:
            test_known_indices, test_unknown_indices, test_data_path = init_or_load_test_indices(dataset_config=dataset_config,
                                                                                                 known_apps=known_apps,
                                                                                                 unknown_apps=unknown_apps,
                                                                                                 tables_app_enum=self._tables_app_enum,
                                                                                                 disable_indices_cache=disable_indices_cache,)
        else:
            test_known_indices = no_indices()
            test_unknown_indices = no_indices()
            test_data_path = None
        # Fit scalers if needed
        if (dataset_config.ppi_transform is not None and dataset_config.ppi_transform.needs_fitting or
            dataset_config.flowstats_transform is not None and dataset_config.flowstats_transform.needs_fitting):
            if not dataset_config.need_train_set:
                raise ValueError("Train set is needed to fit the scalers. Provide pre-fitted scalers.")
            fit_scalers(dataset_config=dataset_config, train_indices=train_indices)
        # Subset dataset indices based on the selected sizes and compute application counts
        dataset_indices = IndicesTuple(train_indices=train_indices, val_known_indices=val_known_indices, val_unknown_indices=val_unknown_indices, test_known_indices=test_known_indices, test_unknown_indices=test_unknown_indices)
        dataset_indices = subset_and_sort_indices(dataset_config=dataset_config, dataset_indices=dataset_indices)
        known_app_counts = compute_known_app_counts(dataset_indices=dataset_indices, tables_app_enum=self._tables_app_enum)
        unknown_app_counts = compute_unknown_app_counts(dataset_indices=dataset_indices, tables_app_enum=self._tables_app_enum)
        # Combine known and unknown test indicies to create a single dataloader
        assert isinstance(dataset_config.test_unknown_size, int)
        if dataset_config.test_unknown_size > 0 and len(unknown_apps) > 0:
            test_combined_indices = np.concatenate((dataset_indices.test_known_indices, dataset_indices.test_unknown_indices))
        else:
            test_combined_indices = dataset_indices.test_known_indices
        # Create encoder the class info structure
        encoder = LabelEncoder().fit(known_apps)
        encoder.classes_ = np.append(encoder.classes_, UNKNOWN_STR_LABEL)
        class_info = create_class_info(servicemap=servicemap, encoder=encoder, known_apps=known_apps, unknown_apps=unknown_apps)
        encode_labels_with_unknown_fn = partial(_encode_labels_with_unknown, encoder=encoder, class_info=class_info)
        # Create train, validation, and test datasets
        train_dataset = val_dataset = test_dataset = None
        if dataset_config.need_train_set:
            train_dataset = PyTablesDataset(
                database_path=dataset_config.database_path,
                tables_paths=dataset_config._get_train_tables_paths(),
                indices=repack_fields(dataset_indices.train_indices[[INDICES_TABLE_FIELD, INDICES_INDEX_FIELD]]), # type: ignore
                tables_app_enum=self._tables_app_enum,
                tables_cat_enum=self._tables_cat_enum,
                flowstats_features=dataset_config.flowstats_features,
                flowstats_features_boolean=dataset_config.flowstats_features_boolean,
                flowstats_features_phist=dataset_config.flowstats_features_phist,
                other_fields=self.dataset_config.other_fields,
                sni_column=self.dataset_config.sni_column,
                ppi_channels=dataset_config.get_ppi_channels(),
                ppi_transform=dataset_config.ppi_transform,
                flowstats_transform=dataset_config.flowstats_transform,
                flowstats_phist_transform=dataset_config.flowstats_phist_transform,
                target_transform=encode_labels_with_unknown_fn,
                return_tensors=dataset_config.return_tensors,)
        if dataset_config.need_val_set:
            assert val_data_path is not None
            val_dataset = PyTablesDataset(
                database_path=dataset_config.database_path,
                tables_paths=dataset_config._get_val_tables_paths(),
                indices=repack_fields(dataset_indices.val_known_indices[[INDICES_TABLE_FIELD, INDICES_INDEX_FIELD]]), # type: ignore
                tables_app_enum=self._tables_app_enum,
                tables_cat_enum=self._tables_cat_enum,
                flowstats_features=dataset_config.flowstats_features,
                flowstats_features_boolean=dataset_config.flowstats_features_boolean,
                flowstats_features_phist=dataset_config.flowstats_features_phist,
                other_fields=self.dataset_config.other_fields,
                sni_column=self.dataset_config.sni_column,
                ppi_channels=dataset_config.get_ppi_channels(),
                ppi_transform=dataset_config.ppi_transform,
                flowstats_transform=dataset_config.flowstats_transform,
                flowstats_phist_transform=dataset_config.flowstats_phist_transform,
                target_transform=encode_labels_with_unknown_fn,
                return_tensors=dataset_config.return_tensors,
                preload=dataset_config.preload_val,
                preload_blob=os.path.join(val_data_path, "preload", f"val_dataset-{dataset_config.val_known_size}.npz"),)
        if dataset_config.need_test_set:
            assert test_data_path is not None
            test_dataset = PyTablesDataset(
                database_path=dataset_config.database_path,
                tables_paths=dataset_config._get_test_tables_paths(),
                indices=repack_fields(test_combined_indices[[INDICES_TABLE_FIELD, INDICES_INDEX_FIELD]]), # type: ignore
                tables_app_enum=self._tables_app_enum,
                tables_cat_enum=self._tables_cat_enum,
                flowstats_features=dataset_config.flowstats_features,
                flowstats_features_boolean=dataset_config.flowstats_features_boolean,
                flowstats_features_phist=dataset_config.flowstats_features_phist,
                other_fields=self.dataset_config.other_fields,
                sni_column=self.dataset_config.sni_column,
                ppi_channels=dataset_config.get_ppi_channels(),
                ppi_transform=dataset_config.ppi_transform,
                flowstats_transform=dataset_config.flowstats_transform,
                flowstats_phist_transform=dataset_config.flowstats_phist_transform,
                target_transform=encode_labels_with_unknown_fn,
                return_tensors=dataset_config.return_tensors,
                preload=dataset_config.preload_test,
                preload_blob=os.path.join(test_data_path, "preload", f"test_dataset-{dataset_config.test_known_size}-{dataset_config.test_unknown_size}.npz"),)
        self.class_info = class_info
        self.dataset_indices = dataset_indices
        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        self.test_dataset = test_dataset
        self.known_app_counts = known_app_counts
        self.unknown_app_counts = unknown_app_counts
        self._collate_fn = collate_fn_simple

set_dataset_config_and_initialize

set_dataset_config_and_initialize(
    dataset_config: DatasetConfig,
    disable_indices_cache: bool = False,
) -> None

Initialize train, validation, and test sets. Data cannot be accessed before calling this method.

Parameters:

Name Type Description Default
dataset_config DatasetConfig

Desired configuration of the dataset.

required
disable_indices_cache bool

Whether to disable caching of the dataset indices. This is useful when the dataset is used in many different configurations and you want to save disk space.

False
Source code in cesnet_datazoo\datasets\cesnet_dataset.py
179
180
181
182
183
184
185
186
187
188
189
def set_dataset_config_and_initialize(self, dataset_config: DatasetConfig, disable_indices_cache: bool = False) -> None:
    """
    Initialize train, validation, and test sets. Data cannot be accessed before calling this method.

    Parameters:
        dataset_config: Desired configuration of the dataset.
        disable_indices_cache: Whether to disable caching of the dataset indices. This is useful when the dataset is used in many different configurations and you want to save disk space.
    """
    self.dataset_config = dataset_config
    self._clear()
    self._initialize_train_val_test(disable_indices_cache=disable_indices_cache)

get_train_dataloader

get_train_dataloader() -> DataLoader

Provides a PyTorch DataLoader for training. The dataloader is created on the first call and then cached. When the dataloader is iterated in random order, the last incomplete batch is dropped. The dataloader is configured with the following config attributes:

Dataset config Description
batch_size Number of samples per batch.
train_workers Number of workers for loading train data.
train_dataloader_order Whether to load train data in sequential or random order. See config.DataLoaderOrder.
train_dataloader_seed Seed for loading train data in random order.

Returns:

Type Description
DataLoader

Train data as an iterable dataloader. See using dataloaders for more details.

Source code in cesnet_datazoo\datasets\cesnet_dataset.py
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
def get_train_dataloader(self) -> DataLoader:
    """
    Provides a PyTorch [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) for training. The dataloader is created on the first call and then cached.
    When the dataloader is iterated in random order, the last incomplete batch is dropped.
    The dataloader is configured with the following config attributes:

    | Dataset config               | Description                                                                                |
    | ---------------------------- | ------------------------------------------------------------------------------------------ |
    | `batch_size`                 | Number of samples per batch.                                                               |
    | `train_workers`              | Number of workers for loading train data.                                                  |
    | `train_dataloader_order`     | Whether to load train data in sequential or random order. See [config.DataLoaderOrder][].  |
    | `train_dataloader_seed`      | Seed for loading train data in random order.                                               |

    Returns:
        Train data as an iterable dataloader. See [using dataloaders][using-dataloaders] for more details.
    """
    if self.dataset_config is None:
        raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting train dataloader")
    if not self.dataset_config.need_train_set:
        raise ValueError("Train dataloader is not available when need_train_set is false")
    assert self.train_dataset
    if self.train_dataloader:
        return self.train_dataloader
    # Create sampler according to the selected order
    if self.dataset_config.train_dataloader_order == DataLoaderOrder.RANDOM:
        if self.dataset_config.train_dataloader_seed is not None:
            generator = torch.Generator()
            generator.manual_seed(self.dataset_config.train_dataloader_seed)
        else:
            generator = None
        self.train_dataloader_sampler = RandomSampler(self.train_dataset, generator=generator)
        self.train_dataloader_drop_last = True
    elif self.dataset_config.train_dataloader_order == DataLoaderOrder.SEQUENTIAL:
        self.train_dataloader_sampler = SequentialSampler(self.train_dataset)
        self.train_dataloader_drop_last = False
    else: assert_never(self.dataset_config.train_dataloader_order)
    # Create dataloader
    batch_sampler = BatchSampler(sampler=self.train_dataloader_sampler, batch_size=self.dataset_config.batch_size, drop_last=self.train_dataloader_drop_last)
    train_dataloader = DataLoader(
        self.train_dataset,
        num_workers=self.dataset_config.train_workers,
        worker_init_fn=worker_init_fn,
        collate_fn=self._collate_fn,
        persistent_workers=self.dataset_config.train_workers > 0,
        batch_size=None,
        sampler=batch_sampler,)
    if self.dataset_config.train_workers == 0:
        self.train_dataset.pytables_worker_init()
    self.train_dataloader = train_dataloader
    return train_dataloader

get_val_dataloader

get_val_dataloader() -> DataLoader

Provides a PyTorch DataLoader for validation. The dataloader is created on the first call and then cached. The dataloader is configured with the following config attributes:

Dataset config Description
test_batch_size Number of samples per batch for loading validation and test data.
val_workers Number of workers for loading validation data.

Returns:

Type Description
DataLoader

Validation data as an iterable dataloader. See using dataloaders for more details.

Source code in cesnet_datazoo\datasets\cesnet_dataset.py
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
def get_val_dataloader(self) -> DataLoader:
    """
    Provides a PyTorch [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) for validation.
    The dataloader is created on the first call and then cached.
    The dataloader is configured with the following config attributes:

    | Dataset config    | Description                                                       |
    | ------------------| ------------------------------------------------------------------|
    | `test_batch_size` | Number of samples per batch for loading validation and test data. |
    | `val_workers`     | Number of workers for loading validation data.                    |

    Returns:
        Validation data as an iterable dataloader. See [using dataloaders][using-dataloaders] for more details.
    """
    if self.dataset_config is None:
        raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting validaion dataloader")
    if not self.dataset_config.need_val_set:
        raise ValueError("Validation dataloader is not available when need_val_set is false")
    assert self.val_dataset is not None
    if self.val_dataloader:
        return self.val_dataloader
    batch_sampler = BatchSampler(sampler=SequentialSampler(self.val_dataset), batch_size=self.dataset_config.test_batch_size, drop_last=False)
    val_dataloader = DataLoader(
        self.val_dataset,
        num_workers=self.dataset_config.val_workers,
        worker_init_fn=worker_init_fn,
        collate_fn=self._collate_fn,
        persistent_workers=self.dataset_config.val_workers > 0,
        batch_size=None,
        sampler=batch_sampler,)
    if self.dataset_config.val_workers == 0:
        self.val_dataset.pytables_worker_init()
    self.val_dataloader = val_dataloader
    return val_dataloader

get_test_dataloader

get_test_dataloader() -> DataLoader

Provides a PyTorch DataLoader for testing. The dataloader is created on the first call and then cached.

When the dataset is used in the open-world setting, and unknown classes are defined, the test dataloader returns test_known_size samples of known classes followed by test_unknown_size samples of unknown classes.

The dataloader is configured with the following config attributes:

Dataset config Description
test_batch_size Number of samples per batch for loading validation and test data.
test_workers Number of workers for loading test data.

Returns:

Type Description
DataLoader

Test data as an iterable dataloader. See using dataloaders for more details.

Source code in cesnet_datazoo\datasets\cesnet_dataset.py
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
def get_test_dataloader(self) -> DataLoader:
    """
    Provides a PyTorch [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) for testing.
    The dataloader is created on the first call and then cached.

    When the dataset is used in the open-world setting, and unknown classes are defined,
    the test dataloader returns `test_known_size` samples of known classes followed by `test_unknown_size` samples of unknown classes.

    The dataloader is configured with the following config attributes:

    | Dataset config    | Description                                                       |
    | ------------------| ------------------------------------------------------------------|
    | `test_batch_size` | Number of samples per batch for loading validation and test data. |
    | `test_workers`    | Number of workers for loading test data.                          |

    Returns:
        Test data as an iterable dataloader. See [using dataloaders][using-dataloaders] for more details.
    """
    if self.dataset_config is None:
        raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting test dataloader")
    if not self.dataset_config.need_test_set:
        raise ValueError("Test dataloader is not available when need_test_set is false")
    assert self.test_dataset is not None
    if self.test_dataloader:
        return self.test_dataloader
    batch_sampler = BatchSampler(sampler=SequentialSampler(self.test_dataset), batch_size=self.dataset_config.test_batch_size, drop_last=False)
    test_dataloader = DataLoader(
        self.test_dataset,
        num_workers=self.dataset_config.test_workers,
        worker_init_fn=worker_init_fn,
        collate_fn=self._collate_fn,
        persistent_workers=False,
        batch_size=None,
        sampler=batch_sampler,)
    if self.dataset_config.test_workers == 0:
        self.test_dataset.pytables_worker_init()
    self.test_dataloader = test_dataloader
    return test_dataloader

get_dataloaders

get_dataloaders() -> (
    tuple[DataLoader, DataLoader, DataLoader]
)

Gets train, validation, and test dataloaders in one call.

Source code in cesnet_datazoo\datasets\cesnet_dataset.py
316
317
318
319
320
321
322
323
def get_dataloaders(self) -> tuple[DataLoader, DataLoader, DataLoader]:
    """Gets train, validation, and test dataloaders in one call."""
    if self.dataset_config is None:
        raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting dataloaders")
    train_dataloader = self.get_train_dataloader()
    val_dataloader = self.get_val_dataloader()
    test_dataloader = self.get_test_dataloader()
    return train_dataloader, val_dataloader, test_dataloader

get_train_df

get_train_df(flatten_ppi: bool = False) -> pd.DataFrame

Creates a train Pandas DataFrame. The dataframe is in sequential (datetime) order. Consider shuffling the dataframe if needed.

Memory usage

The whole train set is loaded into memory. If the dataset size is larger than 'S', consider using get_train_dataloader instead.

Parameters:

Name Type Description Default
flatten_ppi bool

Whether to flatten the PPI sequence into individual columns (named IPT_X, DIR_X, SIZE_X, PUSH_X, X being the index of the packet) or keep one PPI column with 2D data.

False

Returns:

Type Description
DataFrame

Train data as a dataframe.

Source code in cesnet_datazoo\datasets\cesnet_dataset.py
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
def get_train_df(self, flatten_ppi: bool = False) -> pd.DataFrame:
    """
    Creates a train Pandas [`DataFrame`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html). The dataframe is in sequential (datetime) order. Consider shuffling the dataframe if needed.

    !!! warning "Memory usage"

        The whole train set is loaded into memory. If the dataset size is larger than `'S'`, consider using `get_train_dataloader` instead.

    Parameters:
        flatten_ppi: Whether to flatten the PPI sequence into individual columns (named `IPT_X`, `DIR_X`, `SIZE_X`, `PUSH_X`, *X* being the index of the packet) or keep one `PPI` column with 2D data.

    Returns:
        Train data as a dataframe.
    """
    self._check_before_dataframe(check_train=True)
    assert self.dataset_config is not None and self.train_dataset is not None
    if len(self.train_dataset) > DATAFRAME_SAMPLES_WARNING_THRESHOLD:
        warnings.warn(f"Train set has ({len(self.train_dataset)} samples), consider using get_train_dataloader() instead")
    train_dataloader = self.get_train_dataloader()
    assert isinstance(train_dataloader.sampler, BatchSampler) and self.train_dataloader_sampler is not None
    # Read dataloader in sequential order
    train_dataloader.sampler.sampler = SequentialSampler(self.train_dataset)
    train_dataloader.sampler.drop_last = False
    feature_names = self.dataset_config.get_feature_names(flatten_ppi=flatten_ppi)
    df = create_df_from_dataloader(dataloader=train_dataloader,
                                   feature_names=feature_names,
                                   flatten_ppi=flatten_ppi,
                                   silent=self.silent)
    # Restore the original dataloader sampler and drop_last
    train_dataloader.sampler.sampler = self.train_dataloader_sampler
    train_dataloader.sampler.drop_last = self.train_dataloader_drop_last
    return df

get_val_df

get_val_df(flatten_ppi: bool = False) -> pd.DataFrame

Creates validation Pandas DataFrame. The dataframe is in sequential (datetime) order.

Memory usage

The whole validation set is loaded into memory. If the dataset size is larger than 'S', consider using get_val_dataloader instead.

Parameters:

Name Type Description Default
flatten_ppi bool

Whether to flatten the PPI sequence into individual columns (named IPT_X, DIR_X, SIZE_X, PUSH_X, X being the index of the packet) or keep one PPI column with 2D data.

False

Returns:

Type Description
DataFrame

Validation data as a dataframe.

Source code in cesnet_datazoo\datasets\cesnet_dataset.py
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
def get_val_df(self, flatten_ppi: bool = False) -> pd.DataFrame:
    """
    Creates validation Pandas [`DataFrame`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html). The dataframe is in sequential (datetime) order.

    !!! warning "Memory usage"

        The whole validation set is loaded into memory. If the dataset size is larger than `'S'`, consider using `get_val_dataloader` instead.

    Parameters:
        flatten_ppi: Whether to flatten the PPI sequence into individual columns (named `IPT_X`, `DIR_X`, `SIZE_X`, `PUSH_X`, *X* being the index of the packet) or keep one `PPI` column with 2D data.

    Returns:
        Validation data as a dataframe.
    """
    self._check_before_dataframe(check_val=True)
    assert self.dataset_config is not None and self.val_dataset is not None
    if len(self.val_dataset) > DATAFRAME_SAMPLES_WARNING_THRESHOLD:
        warnings.warn(f"Validation set has ({len(self.val_dataset)} samples), consider using get_val_dataloader() instead")
    feature_names = self.dataset_config.get_feature_names(flatten_ppi=flatten_ppi)
    return create_df_from_dataloader(dataloader=self.get_val_dataloader(),
                                     feature_names=feature_names,
                                     flatten_ppi=flatten_ppi,
                                     silent=self.silent)

get_test_df

get_test_df(flatten_ppi: bool = False) -> pd.DataFrame

Creates test Pandas DataFrame. The dataframe is in sequential (datetime) order.

When the dataset is used in the open-world setting, and unknown classes are defined, the returned test dataframe is composed of test_known_size samples of known classes followed by test_unknown_size samples of unknown classes.

Memory usage

The whole test set is loaded into memory. If the dataset size is larger than 'S', consider using get_test_dataloader instead.

Parameters:

Name Type Description Default
flatten_ppi bool

Whether to flatten the PPI sequence into individual columns (named IPT_X, DIR_X, SIZE_X, PUSH_X, X being the index of the packet) or keep one PPI column with 2D data.

False

Returns:

Type Description
DataFrame

Test data as a dataframe.

Source code in cesnet_datazoo\datasets\cesnet_dataset.py
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
def get_test_df(self, flatten_ppi: bool = False) -> pd.DataFrame:
    """
    Creates test Pandas [`DataFrame`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html). The dataframe is in sequential (datetime) order.


    When the dataset is used in the open-world setting, and unknown classes are defined,
    the returned test dataframe is composed of `test_known_size` samples of known classes followed by `test_unknown_size` samples of unknown classes.


    !!! warning "Memory usage"

        The whole test set is loaded into memory. If the dataset size is larger than `'S'`, consider using `get_test_dataloader` instead.

    Parameters:
        flatten_ppi: Whether to flatten the PPI sequence into individual columns (named `IPT_X`, `DIR_X`, `SIZE_X`, `PUSH_X`, *X* being the index of the packet) or keep one `PPI` column with 2D data.

    Returns:
        Test data as a dataframe.
    """
    self._check_before_dataframe(check_test=True)
    assert self.dataset_config is not None and self.test_dataset is not None
    if len(self.test_dataset) > DATAFRAME_SAMPLES_WARNING_THRESHOLD:
        warnings.warn(f"Test set has ({len(self.test_dataset)} samples), consider using get_test_dataloader() instead")
    feature_names = self.dataset_config.get_feature_names(flatten_ppi=flatten_ppi)
    return create_df_from_dataloader(dataloader=self.get_test_dataloader(),
                                     feature_names=feature_names,
                                     flatten_ppi=flatten_ppi,
                                     silent=self.silent)

get_num_classes

get_num_classes() -> int

Returns the number of classes in the current configuration of the dataset.

Source code in cesnet_datazoo\datasets\cesnet_dataset.py
411
412
413
414
415
def get_num_classes(self) -> int:
    """Returns the number of classes in the current configuration of the dataset."""
    if self.class_info is None:
        raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting the number of classes")
    return self.class_info.num_classes

get_known_apps

get_known_apps() -> list[str]

Returns the list of known applications in the current configuration of the dataset.

Source code in cesnet_datazoo\datasets\cesnet_dataset.py
417
418
419
420
421
def get_known_apps(self) -> list[str]:
    """Returns the list of known applications in the current configuration of the dataset."""
    if self.class_info is None:
        raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting known apps")
    return self.class_info.known_apps

get_unknown_apps

get_unknown_apps() -> list[str]

Returns the list of unknown applications in the current configuration of the dataset.

Source code in cesnet_datazoo\datasets\cesnet_dataset.py
423
424
425
426
427
def get_unknown_apps(self) -> list[str]:
    """Returns the list of unknown applications in the current configuration of the dataset."""
    if self.class_info is None:
        raise ValueError("Dataset is not initialized, use set_dataset_config_and_initialize() before getting unknown apps")
    return self.class_info.unknown_apps

compute_dataset_statistics

compute_dataset_statistics(
    num_samples: int | Literal["all"] = 10000000,
    num_workers: int = 4,
    batch_size: int = 16384,
    disabled_apps: Optional[list[str]] = None,
) -> None

Computes dataset statistics and saves them to the statistics_path folder.

Parameters:

Name Type Description Default
num_samples int | Literal['all']

Number of samples to use for computing the statistics.

10000000
num_workers int

Number of workers for loading data.

4
batch_size int

Number of samples per batch for loading data.

16384
disabled_apps Optional[list[str]]

List of applications to exclude from the statistics.

None
Source code in cesnet_datazoo\datasets\cesnet_dataset.py
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
def compute_dataset_statistics(self, num_samples: int | Literal["all"] = 10_000_000, num_workers: int = 4, batch_size: int = 16384, disabled_apps: Optional[list[str]] = None) -> None:
    """
    Computes dataset statistics and saves them to the `statistics_path` folder.

    Parameters:
        num_samples: Number of samples to use for computing the statistics.
        num_workers: Number of workers for loading data.
        batch_size: Number of samples per batch for loading data.
        disabled_apps: List of applications to exclude from the statistics.
    """
    if disabled_apps:
        bad_disabled_apps = [a for a in disabled_apps if a not in self.available_classes]
        if len(bad_disabled_apps) > 0:
            raise ValueError(f"Bad applications in disabled_apps {bad_disabled_apps}. Use applications available in dataset.available_classes")
    if not os.path.exists(self.statistics_path):
        os.mkdir(self.statistics_path)
    compute_dataset_statistics(database_path=self.database_path,
                               tables_app_enum=self._tables_app_enum,
                               tables_cat_enum=self._tables_cat_enum,
                               output_dir=self.statistics_path,
                               packet_histograms=self.metadata.packet_histograms,
                               flowstats_features_boolean=self.metadata.flowstats_features_boolean,
                               protocol=self.metadata.protocol,
                               extra_fields=not self.name.startswith("CESNET-TLS22"),
                               disabled_apps=disabled_apps if disabled_apps is not None else [],
                               num_samples=num_samples,
                               num_workers=num_workers,
                               batch_size=batch_size,
                               silent=self.silent)